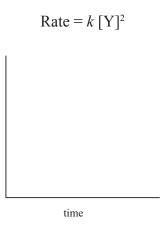


NMSI Super Problem: Integrated Rate Laws


The decomposition of substance X was experimentally observed at 25°C and shown to be first order with respect to X. Data from the experiment are shown below.

[X] <i>M</i>	Time (min)
0.100	0
0.088	2
0.069	6
0.054	10
0.043	14
0.030	???

- a. For each of the graphs above
 - i. Sketch the expected curve based on the labeled axes. You do not need to plot the exact data.
 - ii. Write the rate law for the decomposition of substance X.
 - iii. Explain how one of the two graphs above can be used to determine the rate constant, k. Be sure to specify which graph.
- b. Based on the above data
 - i. Calculate the rate constant for this reaction. Be sure to include units.
 - ii. How many minutes will it take for [X] to become 0.030 M?

In a different experiment, the decomposition of substance Y at 50°C was determined to have the following rate law.

- c. On the axes above
 - i. Sketch the graph that is expected to provide a linear relationship when plotted against time. Be sure to label the y-axis.
 - ii. What does the slope of this line represent?
- d. The temperature of this reaction was increased from 50°C to 100°C. Predict the effect this would have on each of the following.
 - i. Rate of the reaction
 - ii. Rate constant, k
- e. Sketch the graph of the reaction at 100°C on the plot in part (c)