

Unit9

NMSI Super Problem: General Equilibrium

$$2 SO_3(g) \Rightarrow 2 SO_2(g) + O_2(g)$$

A 5.00 mol sample of sulfur trioxide, SO_3 is placed into a 5.00 L reaction vessel and allowed to decompose at 400 K according the reaction above. Once equilibrium is established, 3.00 mol of sulfur dioxide, SO_2 , is present.

- a. Write the expression for the equilibrium constant, K_c , for the reaction above.
- b. Calculate
 - i. the initial molar concentration of SO₃
 - ii. the equilibrium concentrations of O2, SO2, and SO3
- c. Calculate the equilibrium constant, K_c for this reaction.
- d. Calculate the equilibrium constant, K_p for this reaction.

The reaction vessel above is cooled from 400 K to 298 K. The mixture reestablishes equilibrium with fewer moles of sulfur dioxide and oxygen gas at the new temperature.

- e. Is the forward reaction endothermic or exothermic? Justify your answer.
- Predict the sign of the standard entropy change, ΔS° , for the reaction. Explain.

AP Chemistry

The value of the standard free energy change, ΔG° , for the reaction is +141.8 kJ mol⁻¹. Calculate the value of the equilibrium constant, K, at 298 K.

- h. Determine whether the number of moles of SO₃ will increase, decrease, or stay the same after each of the following disturbances. Justify each response.
 - i. The temperature of the equilibrium mixture is decreased.
 - ii. The volume of the reaction container is increased.

In a different experiment, sulfur dioxide and oxygen gases were added to a reaction vessel at 400 K and the following reaction occurred and equilibrium was established.

$$SO_2(g) + \frac{1}{2} O_2(g) \Rightarrow SO_3(g)$$

i. Calculate the equilibrium constant, K_c for this reaction at 400. K.