Intermolecular Force Worksheet Key

1. Draw the following substances. Then, identify **the strongest** intermolecular force present in pure samples of the following substances:

 SO_2

 H_2O

CH₂Cl₂

H^{ZOZ}H

: Ĉ|: 11--> Ĉ| 11-

dipole-dipole forces

hydrogen bonds

dipole-dipole forces

SCO

PCl₃

 SO_3

dipole-dipole forces

dipole-dipole forces

London dispersion forces

2. Identify the strongest intermolecular force operating in the condensed phases of the following substances. Fully explain how you determined this.

a. Cl ₂ London dispersion forces The Cl-Cl bond is nonpolar so the
molecule is nonpolar. Non polar molecules have only London dispersion forces operating in the substance.
c. SO ₂ Dipole-dipole forces
SO ₂ is a bent, polar molecule. The strongest intermolecular force in a polar molecule is the dipole-dipole force
e. HF Hydrogen bonding forces
Molecules that have hydrogen attached to an O, N, or F can form hydrogen bonds. These are the strongest of the intermolecular forces.

b. CO

Dipole-dipole forces

The C-O bond is polar so the molecule is polar. Polar molecules have dipole-dipole forces. They also have London dispersion forces, but dipole-dipole forces are stronger.

d. CH₂Cl₂

Dipole-dipole forces

The strongest intermolecular force in a polar molecule that cannot form hydrogen bonds is the dipole-dipole force

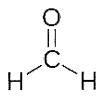
g. CH₃-O-CH₃ Dipole-dipole forces

The hydrogen atoms are not bonded to the oxygen, so this molecule cannot form hydrogen bonds. It is polar, so it will have dipole-dipole forces.

- 3. Based on the intermolecular forces present, predict the relative boiling points of each of the substances below. Arrange each series of substances in order of increasing boiling point. State your reasons for the order you use (identify the forces and explain how they affect the boiling point).
 - a. dimethyl ether (CH₃OCH₃), ethanol (CH₃CH₂OH), and propane (CH₃CH₂CH₃)

lowest bp: propane (CH₃CH₂CH₃) < dimethyl ether (CH₃OCH₃)< ethanol (CH₃CH₂OH) highest bp

Dimethyl ether cannot form hydrogen bonds (no O-H bond), but is polar and has dipole-dipole forces. Ethanol can form hydrogen bonds, propane is nonpolar, so it has only London dispersion forces. The boiling point increases as the strength of the intermolecular forces increase:


London dispersion < dipole-dipole forces < hydrogen bonds

[All have similar molar masses: 46.07g/mol, 46.07g/mol and 44.09g/mol respectively.]

lowest bp: $Cl_2 \le Br_2 \le I_2$ highest bp

All are nonpolar molecules so only London dispersion forces are present. London dispersion forces get stronger as molar mass increases.

- 4. Circle all of the intermolecular forces that exist between molecules for the following samples:
 - A. water: dipole, hydrogen
 - B. methane (CH₄): London dispersion
 - C. CH₂O: dipole

D. SF₄: dipole

E. CH₂F₂: dipole

5. Rank the following substances in terms of increasing boiling points: water, CH_2O , methane, CO_2 methane, CO_2 , CH_2O , water