P Chem - Un: +3 -Gases Test

ULTIPLE CHOICE

ANS: C

PV = nRT, but we have 3 constants: volume (rigid container), temperature, and R. So, this simplifies to $P \propto n$, so the pressure for each gas depends on the number of moles of each gas AND equal masses of each gas were placed in the container, so P really depends on the molar mass of each gas. Also note the gases are "ideal". Thus collisions are elastic and IMFs are neglected.

DIF: Medium

OBJ: 1.4

NAT: 7.1

KEY: ideal | gas | pressure | Avogadro's Law

TOP: Gas Laws
NOT: 54% answered correctly $P = \frac{ORX}{V} R_{1} T_{1} V$ Combands

ANS: A Since the volume of the three original flasks are equal, the pressures are proportional to the number of molecules in the containers, which are in the ratio of 2:1:6. The pressure in the first flask is given as 2 atm, therefore the pressures in the three containers are 2 atm, 1 atm, and 6 atm, respectively. If these were combined into a single flask with a volume equal to that of the original vessels (1 liter), the total pressure would be the sum of these partial pressures, corresponding to 9 atm. Since the final flask has a volume of 3 liters, which lowers the pressure TOP: Gases P= 1 When R,T, combined TOP: Gases

by a factor of 3, to 3 atm.

ANS: C

Expect easy math!

When density (or density data) is given and molar mass (weight) is required, think "molar mass kitty cat". You

know, "every good cat puts "dirt" over its "pee" (Apologies!):

 $MM = \frac{dRT}{P} = \frac{\binom{2g}{1L}R(127 + 273K)}{3 \text{ atm}} = \frac{(2)(400)R}{3} = \frac{800}{3}R$ DIF: Easy OBJ: 2.6 NAT: 2.2 | 2.3 TOP: Gas Laws DIF: Gas Laws

NOT: 75% answered correctly KEY: molar mass of gas | density of gas

mm = DRT

MM = DRT

🛀. ANS: C

$$PV = nRT : n = \frac{PV}{RT} = \frac{g}{MM} : \frac{MM}{g} = \frac{RT}{PV} : MM = \frac{gRT}{PV} = \frac{[(3.0)(0.08)(400)]}{[(1.0)(1.5)]}$$

DIF: Easy

OBJ: 1.2

NAT: 2.2

TOP: Gas Laws

KEY: ideal gas law | molar mass

NOT: 81% answered correctly

ANS: D

"Effuse" is simply diffuse through a small opening. So, the heaviest molecule will effuse the slowest. HBr has the highest molecular mass (about 80 g/mol), thus it is the slowest to effuse.

DIF: Medium

OBJ: 2.4

NAT: 1.4 | 6.4

TOP: Gas Laws | Gases

KEY: Graham's Law of Effusion KMT | rate of effusion | molar mass of gas

NOT: 62% answered correctly

ANS: B

Once the water level inside the tube is equilibrated with the water level in the trough, it is safe to assume the total pressure within the tube is equal to atmospheric pressure of the lab room.

So, the P of the H_2 gas collected + the P of the water vapor within the tube = 765.5 mm Hg. Next, we perform a simple subtraction of the pressure of the water vapor to determine the pressure attributed to just the hydrogen gas collected.

. .765.5 mm Hg -21.1 mm Hg of water contributing to the total P = 744.4 mm Hg is exerted by the H₂ gas alone.

DIF: Easy

OBJ: 2.6

NAT: 2.2 | 2.3

TOP: Gas Laws

KEY: Dalton's Law | dry gas | partial pressures | wet gas | lab

Once the water level inside the tube is equilibrated (leveled) with the water level in the trough, it is safe to assume the total pressure within the tube is equal to atmospheric pressure of the lab room. There's no easy way to measure the pressure within the tube AND the measured volume of the gas will change during the leveling process. If you fail to level the two, then your recorded volume of H₂ gas collected will be flat incorrect! While answer (B) is enticing, the volume is measured at room temperature, whether the levels are equal or not

DIF: Hard

OBJ: 2.6 | 2.4

NAT: 2.2 | 2.3 | 1.4 | 6.4

TOP: Gases | Lab

KEY: Dalton's Law | dry gas | wet gas | lab

ANS: B

Expect easy math!

Rxn:

 $Xe \rightarrow$ Xe_xF_v F_2

Initial:

1.7 atm 8.0 atm

0

After:

0 4.6 atm*

So subtract! And you realize that 3.4 atm of F2 reacted AND 1.7 atm of the Xe reacted which is a 2 F2: 1 Xe ratio which is equivalent to a 4 F: 1 Xe ratio or XeF₄

DIF: Hard

OBJ: 3.3

NAT: 2.2 | 5.1

TOP: Gas Laws

KEY: stoichiometry | partial pressure | molecular formula

NOT: 38% answered correctly

ANS: C

"Rigid" is code for constant volume. The pressure would increase due to the increased number of molecules colliding with the container. Since the temperature is held constant the average KE of the molecules remains the same and since their mass remains constant (only oxygen in the tank), their velocity also remains constant (correct answer). If you added oxygen to the tank you increased the total number of molecules within the tank so obviously the number of molecules could not remain the same.

DIF: Medium

OBJ: 1.4

NAT: 7.1

TOP: Gas Laws

KEY: kinetic molecular theory

NOT: 54% answered correctly

ANS: A

Light gas molecules move faster than heavy ones. So, He moved out quickest, with Ne in second place and Ar dragging up the rear. That left more Ar in the container to exert a greater pressure (more molecules colliding with the container) with Ne being in the middle and He having the fewest molecules remaining, thus exerting the least pressure. So, P_{He} is less than $\,P_{\text{Ne}}$ which is less than $P_{\text{Ar}}.$

DIF: Medium

OBJ: 2.4

NAT: 6.4 | 1.4

TOP: Gas Laws

KEY: partial pressure | effusion | rate of effusion

NOT: 65% answered correctly

24. ANS: D

Temperature is a function of the KE_{avg} of the molecules and since all 3 gas samples are at the exact same temperature, they have identical KE_{avg}.

DIF: Easy

OBJ: 5.2

NAT: 1.1 | 1.4 | 7.2 TOP: Gases | Kinetics

KEY: average KE | KE avg | gases

ANS: B

The density is proportional to the product of the pressure and the molar mass since V is the same for each gas in the "identical containers".

 $P \times molar mass =$

Container A: $4 \times 16 = 64$

Container B: $2 \times 30 = 60$

Container C: $2 \times 58 = 116$

This product is greatest for container C and least for Container B

DIF: Hard

OBJ: 2.6

NAT: 2.2

TOP: Gases | Kinetics

KEY: average KE | KE avg | gases

100

ANS: C

The kinetic molecular theory states that gases behave most ideally at high temperatures (since they have enough KE to avoid being attracted to each other and condensing) and low pressures (since they remain far enough apart to avoid being attracted to each other and their molecular volumes remain insignificant). So, shop for the highest T which are answers (C) & (D) coupled with the lowest P which is answer (C).

DIF: Hard

OBJ: 2.4

NAT: 1.4 | 6.4

TOP: Gas Laws

KEY: kinetic molecular theory | behavior of gases

NOT: 37% answered correctly

ANS: A

I would call this an easy question, but you may call it a trick! If 2 samples are at the same temperature, their average molecular kinetic energy is the same since that's the definition of temperature! Over half the country missed this question.

DIF: Medium

OBJ: 2.4

NAT: 1.4 | 6.4

TOP: Gas Laws

KEY: temperature | kinetic molecular theory | average kinetic theory

NOT: 47% answered correctly

AP Chem - Un: + 3 - Test - FR

Soln: (66.50g C) (makec) = 5.54 make C/5.54 = 1 1 Given: 1 66.50% C (33.50g H) 1 mole H) = 33.23 mole H 5.54 = 5.998 60% empiricul Formula

CH6 1+2

B D=2.0g/L P= .948 A+m

U=2.0g/L 50/n: T=50°C+273=323K i) MM = DRT +1 = (2.0g/L)(008206X323K)

ii) molecular Formule? CH6 = 18.06 glask

MM = 56 a

Assume T= constant

1000

60/3

3.06 2.ol 2.0Atm 25.e= 298K 1.0 Atm 252 = 298K X

PT = PNZ + POZ

Total valume = 5.0L >

APChem - Unit 3 - Test FR

Ne PV= nRT

$$P_1U_1 = P_2U_2$$

$$P_2 = P_1U_1 = (1.0 \text{ Atm})(2.0 \text{L}) = .4 \text{ Atm} + 2$$

$$5.0 \text{L}$$

$$\frac{O_{2}}{P_{2}} = \frac{P_{1}U_{1}}{V_{2}} = \frac{(2.0 \text{Atm})(3.0 \text{L})}{5.0 \text{L}} = 1.2 \text{Atm} + 2 \quad \text{No. 75 m}$$

$$\frac{P_{7}}{P_{7}} = \frac{P_{1}U_{2}}{P_{2}} + \frac{P_{0}}{P_{2}} = .4 \text{Atm} + 1.2 \text{Atm}$$

$$\frac{P_{7}}{P_{7}} = 1.6 \text{Atm} + 2 \quad \text{get 54 measure}$$

(2) 6,000 m.		· · · · · · · · · · · · · · · · · · ·	
	43 ml = 2843L	MASSFIARES	E. 157. 709
	S = 296K (18th (760 Ton) = 987Ahm	Mass Flaska	745 = 158.088
© 3g A	ت ۱۸۰ ادیق	b= <u>m</u> +1	
3/3 D= wsg/=		W= DA = [11]	39 / 843 -
		m = .99.	g) +2
	FIRSK = MFINE - MOIT		
3/3 O ?g GA	GAS = MFANGLAGAS.	MFIMX = 158.	
	M ₆₄₅ = 1.37g	· ½· V - · · · · · · · · · · · · · · · ·	
3/3 D MM?		= drt d= =	N/
		and the second of the second o	(0.08206)(296K) 787 Am)(-813L)
3/3 @ 7% EL	for if gro is con 4	and the state of t	A company of the comp
		100 = 9.09%	mallermas somble MM Same MM layer 202 Smaller MM Virger 202
			11 San Province

AP Chem - unit 3 - Test - FR	en personal personal de la companya de la companya In
	t 4pts
2.50 g CoHie / Imole CoHie / 5 mole COz = .173 mole COz	12013
PV=08T	4 1
V= nRT = (.173 mole coz X 0.08206 X 298K)	<u> </u>
P 1.03 Atm	
	+2516
	(3) C ₅ H ₁₂ + 80 ₂ (g) = 500 ₂ (g) + 6H ₂ O ₁ (g) 2.50g T=25°c=298 K P(785mm X760mm)=1.03 Atm (2.50g C ₅ H ₁₂) Imole C ₅ H ₁₂ \ 5 mole C ₉ 1.03 Atm PV= nRT V= nRT = (.173mole C ₂ \ 2.0.08206 \ 298 K) P 1.03 Atm