LAB PRACTICUM: PROJECTILE MOTION
 LAB STATIONS

INVESTIGATION A

TASK:
To determine the landing place of the ball when shot at an angle. Ball lands at the same level as the shot ball.

1. DATA COLLECTION

- Identify the variables that you can measure and describe the procedure to measure those variables.
- Write down your data with appropriate units. Include multiple trials and obtain the average.

2. DERIVATION

- Derive an equation that will allow you to predict where the ball will land when shot at an angle.
- Use the equation obtained to predict where the ball will land at $20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°
- Show ONE sample calculation with data, equation, substitution, answer.

3. TESTING

- Find the experimental ranges for the different angles and record your results.
- Calculate the percent difference.

4. CONCLUSION

- If your results differ from what is expected, provide a plausible explanation.
- List the sources of experimental uncertainty.

LAB PRACTICUM: PROJECTILE MOTION LAB STATIONS

INVESTIGATION B

TASK:
To determine the landing place of the ball when shot at an angle. Ball lands on the floor.

1. DATA COLLECTION

- Identify the variables that you can measure and describe the procedure to measure those variables.
- Write down your data with appropriate units. Include multiple trials and obtain the average.

2. DERIVATION

- Derive an equation that will allow you to predict where the ball will land when shot at an angle.
- Use the equation obtained to predict where the ball will land at $20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60°
- Show ONE sample calculation with data, equation, substitution, answer.

3. TESTING

- Find the experimental ranges for the different angles and record your results.
- Calculate the percent difference.

4. CONCLUSION

- If your results differ from what is expected, provide a plausible explanation.
- List the sources of experimental uncertainty.

LAB PRACTICUM: PROJECTILE MOTION
 LAB STATIONS

INVESTIGATION C

TASK:

To determine how the vertical distance the ball drops is related to the horizontal distance the ball travels when the ball is launched horizontally from a table.

1. DATA COLLECTION

- Identify the variables that you can measure and describe the procedure to measure those variables.
- Take multiple measures by moving the target about 10 to 20 cm closer to the launcher.

2. ANALYSIS

- Plot \boldsymbol{y} vs \boldsymbol{x}
- Describe the relationship between the variables.
- What is the meaning of the y-intercept?
- What variable do you need to modify in order to obtain a linear relationship?
- Calculate the slope of the line with appropriate units
- Derive an equation that will represent the slope of the line

3. CALCULATION

- Using the slope of the line, determine the muzzle velocity.
- How does it compare with the muzzle velocity found with the photogate?

4. CONCLUSION

- If your results differ from what is expected, provide a plausible explanation.
- List the sources of experimental uncertainty.

LAB PRACTICUM: PROJECTILE MOTION LAB STATIONS

INVESTIGATION D

TASK 1:

To determine the location of the hoops so that the ball lands in the cup

TASK 2:

The projectile is set on the floor and it will be shot at an angle

FOR EACH TASK:

1. DATA COLLECTION

- Identify the variables that you can measure and describe the procedure to measure those variables.

2. PREDICTION

- Calculate the position of each of the rings and the cup.
- Show one full calculation for each coordinate (x, y)

3. TESTING

- Place the rings on the floor and perform your experiment.

4. CONCLUSION

- Did the ball enter the cup?
- List the sources of experimental uncertainty.

