## NEWTON'S FIRST LAW

## Newton's First Law

- An object in motion tends to stay in motion; an object at rest tends to stay at rest
- An object with no net force acting on it remains at rest or moves with constant velocity
- If an object is not moving, an unbalanced force is required to make it move
- If an object is moving, it will continue with a constant velocity unless an unbalanced force causes a change



## NEWTON'S FIRST LAW (LAW OF INERTIA)

Inertia - is the resistance an object has to a change in its state of motion

- The amount of inertia an object has depends on its mass
- Mass is the amount of material in a body (Kg)
- Weight is a measure of the gravitational force on an object (N)

Objects with a greater mass have more inertia. It takes more force to change their motion.


## NEWTON'S SECOND LAW (F = MA)

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.
$\Sigma$ F represents the vector sum of all external forces acting on the object, or the net force.

$$
a=\sum F / m
$$

We usually rewrite this as: Force = mass $x$ acceleration
$\sum \mathrm{F}=\mathrm{ma}$
Like any of our other vector equations, we can split this into equations for $x$ and $y$-components:

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \\
& \sum F_{y}=m a_{y}
\end{aligned}
$$

## NEWTON'S LAWS: FIRST \& SECOND

The key is to ask yourself: Does the object have acceleration?
If NO - the object is either at rest or moving with a constant velocity, so the forces on the object must be balanced (the net force on the object is zero).

If YES - the object has acceleration, and therefore the forces are unbalanced.

The direction of the net force is the same as the direction of acceleration.

Do not make the mistake of asking yourself: Is the object moving?

## NEWTON'S $2^{\text {ND }}$ LAW

An object will only accelerate if there is an unbalanced force

- The acceleration of an object is directly proportional to the net force acting on the object and inversely proportional to the object's mass.
$a=\underline{\sum F}$
m

Forces are unbalanced

There is an acceleration


The acceleration depends directly upon the "net force"

The acceleration depends inversely upon the object's mass

## FREE BODY DIAGRAMS

$F_{\text {triction }}=11 \mathrm{~N}$
$F_{\text {gravity-on-boob-book }}=22 \mathrm{~N} \downarrow$

Free-body diagrams - shows all the forces acting on a single object.

- Only shows the forces acting on the object. DO NOT INCLUDE COMPONENTS ( $\mathrm{F}_{\mathrm{Ty}}$ and $\mathrm{F}_{\mathrm{Tx}}$ )
- Choose a coordinate axis system, one that puts the most forces on the axis's
- The effect of a force depends on both magnitude and direction. Thus, force is a vector quantity
- Represented by arrows away from the object appropriate direction


## DRAWING FBD



- Draw a "super dot" of the object
- In same position - if on inclined plane, so should dot
- Draw \& label vector arrows (not components)
- Use Standard labels: $\mathrm{F}_{\mathrm{T}} \mathrm{F}_{\mathrm{f}} \mathrm{F}_{\mathrm{N}} \mathrm{F}_{\mathrm{w}}$ etc
- Each force must be represented by a distant arrow, starting on and pointing away from the dot
- You cannot draw one force vector on top of another one. Each force vector must also start on and point away from the dot.
- Make an attempt to indicate the relative of the force with the length of the vector


## TYPES OF FORCES

## Tension $\mathrm{F}_{\mathrm{T}}$ :

- The force of a rope/string/etc. attached to an object and pulling on it.
- The tension in a rope pulls on the object(s) at both ends of the rope, in the direction of the rope.



## Spring Force $\mathrm{F}_{\mathrm{s}}$ :

- Similar to tension, but a spring can push or pull an object depending on how Spring is compressed or stretched from its original length ( $\Delta x$ )
- The direction of the force is always opposite the direction in the springs length has changed



## TYPES OF FORCES

## Normal Force $\mathrm{F}_{\mathrm{N}}$ :

- Contact force that acts perpendicular (normal) to the surface
- Measures how firmly the objects are in contact with each other
- $\mathrm{F}_{\mathrm{N}}=0$ when surface NOT in contact with object


Nonmal forces are always directed perpendicular to the sufface.

## Force of Gravity $\mathrm{F}_{\mathrm{w}}$ :

- Only Field Force - No physical contact between the object and Earth necessary
- Labels of G, g and "gravity" are NOT allowed for gravitational force, use Fw or mg
- If there are 2 distinct objects, must distinguish the gravitational force. (W1, W2, or m1g, m2g)



## TYPES OF FORCES

## Friction $\mathrm{F}_{\mathrm{f}}$ :

- Contact force that opposes relative motion between two objects
- $\mathrm{F}_{\mathrm{f}}$ always acts parallel to surface
- The amount of frictional force depends on the normal force and the microscopic properties of the objects

- If the problem refers to "negligible friction" or a "smooth surface" then there NO friction force
- Friction is always less than or equal to Normal Force


## EXAMPLE 1

- A book is at rest on a table top. Diagram the forces acting on the book.
- In this diagram, there are normal and gravitational forces on the book
- Note: Vectors are same length
- Eqns: Sum of forces

$$
\begin{array}{ll}
\Sigma F_{x}=m a_{x} & \Sigma F_{y}=m a_{y} \\
\Sigma F_{x}=0 & \Sigma F_{y}=F_{N}-F_{w}=\operatorname{ma} \\
F_{N}=F_{w}
\end{array}
$$

0


EXAMPLE 2

A rightward force is applied to a book in order to move it across a desk.
Consider frictional forces. Neglect air resistance. Construct a free-
body diagram.
Note the larger applied force arrow pointing to the right since the book is accelerating to the right.

- Friction force opposes the direction of motion.
- The force due to gravity and normal forces are balanced.
Write the Eqns for the sum of forces


$$
\begin{aligned}
& \sum F_{x}=m a_{x} \\
& \sum F_{x}=F_{a p p}-F_{f}=m a
\end{aligned}
$$

$\Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}$
$\Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{N}}-\mathrm{F}_{\mathrm{w}}=\mathrm{ma}$
$\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{w}}$

## EXAMPLE 3

With friction, the
(b) $\qquad$
Your shoe is in contact with the ground as you walk, the shoe does not slip on the ground.

Because there is no relative motion between the shoe and the ground, the friction force is static friction $F_{f}$

With friction , the $F_{f}$ is forward, and the shoe does not slide

- If there is no friction, the shoe would slide back. So $\mathrm{F}_{\mathrm{fs}}$ opposes this motion (traction)

$$
\begin{array}{ll}
\Sigma F_{x}=m a_{x} & \sum F_{y}=m a_{y} \\
\Sigma F_{x}=F_{f}=m a & \sum F_{y}=F_{N}-F_{w}=m a \\
F_{N}=F_{w}
\end{array}
$$

## SAMPLE PROBLEM - COMPLEX

## Determining Net Force

Derek leaves his physics book on top of a drafting table that is inclined at a $35^{\circ}$ angle. The book has a force of 22 N , the force of friction is 11 N , and the normal force is 18 N . Find the net force acting on the book.

1. Draw the free-body diagram and identify the variables.

Given:
$F_{\text {gravity }}=F_{w}=22 \mathrm{~N}$
$F_{\text {friction }}=F_{f}=11 \mathrm{~N}$
$F_{N}=18 \mathrm{~N}$
Unknown:

$$
F_{n e t}=\text { ? }
$$



## SAMPLE PROBLEM (CONTINUED)

2. Select a coordinate system \& apply it to the free-body diagram.

- Choose the $x$-axis parallel to and the $y$-axis perpendicular to the incline of the table
- This coordinate system is the most convenient
- only one force needs to be resolved into $x$ and $y$ components.

Tip: To simplify the problem, always choose the coordinate system in which as many forces as possible lie on the $x$ -
 and $y$-axes.

