UNIT 1 - KINEMATICS

OBJECTIVES - KINEMATICS PART 1

- Describe motion in terms of frame of reference, displacement, time, and velocity
- Learn to represent motion - both uniform and accelerating - Using narrative, graphical, and mathematical forms and from different frames of reference
- Be able to show the motion of objects in one \& twodimensions is described using words, diagrams, numbers, graphs, and equations

ONE DIMENSIONAL KINEMATICS

- Kinematics is the science of motion
- How far? = Distance and displacement
- How Fast? = Speed and Velocity

Fiamastudettry baciow, the warmin reda marirs
- How fast does that How Fast change? = Acceleration
- 1 dimension Kinematics - Objects moving in a straight line
- 2 dimension Kinematics - Objects moving in a curve path (example projectile)
- Changes in motion result from a CONSTANT force producing uniform acceleration.
- The cause of motion will be discussed later. Here we only treat the changes.
- To measure motion, you must choose a frame of reference. A frame of reference is a system for specifying the precise location of objects in space and time

MOTION QUANTITIES DIVIDED INTO 2 TYPES

1. Scalars

- Quantities described by a Magnitude alone
- Distance (d) - is the length of the actual path taken by an object
- Speed(s) - how fast an object is moving; Distance/time

- Ex: 14m or 76 mph

2. Vectors

- Quantities described by both a Magnitude and Direction
- Displacement (D) - straight-line distance btwn 2 points
- Velocity (\bar{V}) - Displacement/Time
- Ex: 12 m to the right or 32 mph east.
$\mathbf{D}=12 \mathrm{~m}, 20^{\circ}$

DISTANCE VS DISPLACEMENT

- The person, according to a
 pedometer has walked a total of 12 m . That is the distance traveled.
- The person walking stops where she started, so her displacement is zero.

DISTANCE AND DISPLACEMENT

- For motion along x or y axis, the displacement is determined by the x or y coordinate of its final position.
- Example: Consider a car that travels 8 m, E then 12 m, W.

Net displacement D is from the origin to the final position:

Diplacement (D) = 4 m, W
What is the distance traveled? 20 m I!

THE SIGNS OF DISPLACEMENT

- Displacement is positive (+) or negative $(-)$ based on LOCATION.

Examples:

The displacement is the y coordinate. Whether motion is up or down, + or - is based on LOCATION.

SIGN CONVENTION:
 A BALL THROWN VERTICALLY UPWARD

```
Displacement is positive ( + ) or negative (-) based on LOCATION.
```

- Velocity is positive (+) or negative (-) based on
direction of motion.
- Acceleration is (+) or (-)
based on direction of force
(weight).

MEASURING HOW FASTYOU ARE GOING

$$
\begin{aligned}
& \text { - Speed } \rightarrow \text { S } \\
& \text { - Scalar } \\
& \text { - Standard unit is } \mathrm{m} / \mathrm{s}
\end{aligned}
$$

$$
\text { - Velocity } \rightarrow \bar{V}
$$

$$
S=\frac{\text { distance }}{\text { time }}=\frac{d}{t}
$$

- Vector
- Standard unit is m/s, plus direction
$\bar{v}=\frac{\text { displacement }}{\text { time }}=\frac{D}{t}$

VELOCITY VS SPEED

- If it take the person 4 seconds to walk around the square, what is her average speed and average velocity?
- For speed: $\mathrm{d}=12 \mathrm{~m}$ and $\mathrm{t}=4 \mathrm{~s}$, $\mathrm{so} \mathrm{s}=3 \mathrm{~m} / \mathrm{s}$

THE SIGNS OF VELOCITY

- Velocity is positive (+) or negative (-) based on direction of motion.

First choose + direction; then v is positive if motion is with that direction, and negative if it is against that direction.

EXAMPLE 1. A RUNNER RUNS 200 M , EAST, THEN CHANGES DIRECTION AND RUNS 300 M , WEST. IF THE ENTIRE TRIP TAKES 60 S , WHAT IS THE AVERAGE SPEED AND WHAT IS THE AVERAGE VELOCITY?

Recall that average speed is a function only of total distance and total time:

Total distance: $s=200 m+300 m=500 m$

$$
\text { Average speed }=\frac{\text { total path }}{\text { time }}=\frac{500 \mathrm{~m}}{60 \mathrm{~s}} \text { =Avg. speed } 8.33 \mathrm{~m} / \mathrm{s}
$$

Direction does not matter!

EXAMPLE i (CONT.) NOW WE FIND THE AVERAGE VELOCITY, WHICH IS

 THE NET DISPLACEMENT DIVIDED BY TIME. IN THIS CASE, THE DIRECTION MATTERS.$$
\begin{aligned}
& \bar{v}=\frac{x_{f}-x_{0}}{t} \\
& \mathrm{x}_{\mathrm{o}}=0 \mathrm{~m} ; \mathrm{x}_{\mathrm{f}}=-100 \mathrm{~m} \\
& \bar{v}=\frac{-100 \mathrm{~m}-0}{60 \mathrm{~s}}=-1.67 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Direction of final displacement is to the left as shown.

Average velocity: $\quad \bar{v}=1.67 \mathrm{~m} / \mathrm{s}$, West

Note: Average velocity is directed to the west.

ACCELERATION

- $\Delta \rightarrow$ delta
- Means "change in" and is calculated by subtracting the initial value from the final value.

- Tells us how fast Velocity is changing.
- Either hitting the gas or hitting the break counts as acceleration.
- Units are $\mathrm{m} / \mathrm{s}^{2}$
- Notice NOT on Equation Sheet

ACCELERATION POSITIVE OR NEGATIVE

$$
\left.\left.\begin{array}{l}
+V+a \\
-V-a
\end{array}\right\} \text { Object Speed } \begin{array}{l}
+V-a \\
-V+a
\end{array}\right\} \text { Object Speed }
$$

REVIEW SIGN CONVENTION: A BALL THROWNVERTICALLY UPWARD

Displacement is positive (+) or negative (-) based on LOCATION.

```
- Velocity is positive (+) or negative (-) based on direction of motion.
```

[^0]
[^0]: - Acceleration is $(+)$ or $(-)$ is a
 vector points in the same direction as the change in velocity

