

[Gas Basics

A Gas

- Uniformly fills any container.
- Mixes completely with any other gas.
- Exerts pressure on its surroundings.

Gas properties described by:

- $\mathbf{V}=$ volume of the gas (L)
- $\mathbf{T}=$ temperature (K)
- ALL temperatures in the entire chapter MUST be in Kelvin!!! No Exceptions!
- $\mathbf{P}=$ pressure (atmospheres)

Change one variable affects the other two!!!!!

Pressure

Pressure is defined as the force the gas exerts on a given area of the container in which it is contained. The SI unit for pressure is the Pascal, Pa.

- KEY UNITS AT SEA LEVEL 101.325 kPa (kilopascal)

1 atm
760 mm Hg
14.7 psi

- If you've ever inflated a tire, you've probably made a pressure measurement in pounds (force) pounds (force)
per square inch (area) psi

Volume

Volume is the three-dimensional space inside the container holding the gas. The SI unit for volume is the cubic meter, m^{3}. A more common and convenient unit is the liter, L.

Think of a 2-liter bottle of soda to get an idea of how big a liter is. (OK, how big two of them are...)

Temperature

Temperature is the measurement of heat...or how fast the particles are moving.

- Always use absolute temperature (Kelvin) when working with gases.
- $\mathrm{T}_{\mathrm{K}}=273+\mathrm{T}_{\mathrm{C}}$

- Gases expand, diffuse, exert pressure, and can be compressed because they are in a low-density state consisting of tiny, constantly moving particles
- Due to their constant, random motion, gas molecules diffuse into areas of lower concentration, and effuse through tiny openings
- Common Examples of Diffusion. You can smell perfume because it diffuses into the air and makes its way into your nose. A teabag placed in a cup of hot water will diffuse into the water.

STP: you need to memorize this

Standard Temperature \& Pressure

Temp: $0^{\circ} \mathrm{C}$ or 273 K
Pressure 1 atm or 101.3 kPa

Combined Gas Law

- HERE'S AN EASY WAY TO MEMORIZE ALL OF THIS! Start with the combined gas law:
- $P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}$
- Memorize just this use a simple pattern to figure the rest out:
- \& Place the scientist names in alphabetical order.
- \& Boyle's Law uses the first 2 variables, Charles' Law the second 2 variables \& Gay-Lussac's Law the remaining combination of variables. Whichever variable doesn't appear in the formula is being held CONSTANT!

Kinetic Molecular Theory (KMT)

- The KMT states that particles of matter are always in constant, rapid motion.
- Explains properties of gases, liquids, and solids in terms of energy using an ideal gas
- The five assumptions of KMT
- gas particles are small and the space occupied is mostly empty space
- elastic collisions occur between gas particles - No kinetic energy is lost during collisions
- gas particles are in constant rapid motion
- there are no forces of attraction or repulsion between gas particles
- the kinetic energy of a gas particle depends on the temperature

Ideal Gas Law

$$
P V=n R T
$$

- $R=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$ (universal gas constant)
- $n=$ number of moles of gas (moles)
- $\mathrm{P}=$ pressure (atm)
- V = volume (Liters)
- $\mathrm{T}=$ temperature (K)

$P V=n R T$

- Put variables on left
- Constants on Right
- Remove right, repeat left on Right
- Solve for unknown

Boyle's Law

Boyle's Law: describes the relationship between pressure and volume of gases.

$P_{1} V_{1}=P_{2} V_{2}$

Boyle's Law $\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} \quad \mathrm{~T}=$ Constant

- Boyle determined that for the same amount of a gas at constant temperature, results in an inverse relationship:
when one goes up, the other goes down.

Real life Example: Squeezing a Balloon

Charles' Law

Charles' Law: describes the relationship between volume and temperature of gases.

Charles' Law $\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} \quad \mathrm{P}=$ Constant

- This defines a direct relationship:

With the same amount of gas he found that as the volume increases the temperature also increases or vice versa

Real life Example: Balloon in Flask, heating up water

Gay-Lussac's Law
 $P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}$ $\mathrm{V}=\mathrm{Constant}$

The pressure and absolute temperature (K) of a gas are directly related at constant mass \& volume.

What does it mean?

 $P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}$ $\mathrm{V}=$ Constant- For a gas at constant mass and volume, the pressure and temperature are directly related.

One example is how tire pressure changes with temperature. Tire pressure increases as the weather gets warmer,

- It is a law that combines the previous laws into one.

$P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}$

Avogadro's Principle

- Equal volumes of gases contain equal numbers of moles
- at constant temp \& pressure
- true for any ideal gas

What does it mean?

- For a gas at constant temperature and pressure, the volume is directly proportional to the number of moles of gas.

