

Pressure

Pressure is defined as the force the gas exerts on a given area of the container in which it is contained. The SI unit for pressure is the Pascal, Pa.

- KEY UNITS AT SEA LEVEL
 101.325 kPa (kilopascal)
 1 atm
 760 mm Hg
 14.7 psi
- If you've ever inflated a tire, you've probably made a pressure measurement in pounds (force) per square inch (area) psi

Volume is the three-dimensional space inside the container holding the gas. The SI unit for volume is the cubic meter, m³. A more common and convenient unit is the liter, L.

Think of a 2-liter bottle of soda to get an idea of how big a liter is. (OK, how big two of them are...)

STP: you need to memorize this

Standard Temperature & Pressure

Temp: 0°C or 273 K

Pressure 1 atm or 101.3 kPa

Combined Gas Law

- HERE'S AN EASY WAY TO MEMORIZE ALL OF THIS! Start with the combined gas law:
- $P_1V_1T_2 = P_2V_2T_1$
- Memorize just this use a simple pattern to figure the rest out:
- Place the scientist names in alphabetical order.
- Boyle's Law uses the first 2 variables, Charles' Law the second 2 variables & Gay-Lussac's Law the remaining combination of variables. Whichever variable doesn't appear in the formula is being held CONSTANT!

Kinetic Molecular Theory (KMT)

- The KMT states that particles of matter are always in constant, rapid motion.
 - Explains properties of gases, liquids, and solids in terms of energy using an <u>ideal gas</u>

The five assumptions of KMT

- gas particles are small and the space occupied is mostly empty space
- o elastic collisions occur between gas particles
 - No kinetic energy is lost during collisions
- o gas particles are in constant rapid motion
- there are no forces of attraction or repulsion between gas particles
- o the kinetic energy of a gas particle depends on the temperature

Ideal Gas Law PV = rRT PV = rRT PV = restant P = pressure (atm) P = pressure (atm) V = volume (Liters) T = temperature (K)

Ideal Gas Law – solve all using

PV = nRT

- Put variables on left
- Constants on Right
- Remove right, repeat left on Right
- Solve for unknown

Charles' Law $P_1V_1T_2 = P_2V_2T_1$ P =Constant

This defines a direct relationship: With the same amount of gas he found that as the volume **increases** the temperature also **increases** or vice versa

Real life Example: Balloon in Flask, heating up water

 $P_1V_1T_2 = P_2V_2T_1$ V=Constant

 For a gas at constant mass and volume, the pressure and temperature are directly related.

One example is how tire pressure changes with temperature. Tire pressure increases as the weather gets warmer,

What does it mean?

 For a gas at constant temperature and pressure, the volume is directly proportional to the number of moles of gas.

