Work and Energy

AP Physics Chapter 4

Work and Mechanical Energy

Learning Objectives:
Make predictions about the changes in kinetic energy of an object based on considerations of the direction of the net force on the objects as the object moves

Use net force and velocity vectors to determine qualitatively whether the kinetic energy of an object would increase, decrease or remain unchanged

Use force and velocity vectors to determine qualitatively or quantitively whether the kinetic energy of the object would increase, decrease, or remain unchanged

Objectives: After Work Section

Describe work in terms of force and displacement, using the definition of the scalar product.

Solve problems involving concept of work.

Distinguish between the resultant work and the work of a single force.

Define the spring constant and calculate the work done by a varying spring force.

Formula's on AP Equation Sheet

$K=\frac{1}{2} m v^{2}$ Kinetic Energy
$K=\frac{1}{2} I \omega^{2}$ Kinetic Rotational Energy
$U_{s}=\frac{1}{2} k x^{2}$ Potential Spring Energy
$U_{g}=m g \Delta y$ Potential Gravity Energy
$\mathrm{Ug}=\frac{G m_{1} m_{2}}{r}$ Potential Gravity btwn Masses
$\Delta \mathrm{E}=\mathrm{W}=\mathrm{F}_{\|} \mathrm{d}=\mathrm{Fdcos} \varnothing$ Energy/Work
$\mathrm{P}=\frac{\Delta E}{\Delta t} \quad$ Power
$\mathrm{F}_{\mathrm{s}}=\mathrm{k}|x|$ Hooke's Law for spring constant

Definition of Work

Work (W) is done on an object when a force (F) causes a displacement (d) of the object
Three things are necessary for the performance of work:

1. There must be an applied force F.
2. There must be a displacement x.
3. The force must have a component along the displacement. Work is done on an object only if it moves in the direction of the force

$W=F d$

Force units $(\mathrm{N}) \times$ distance units (m) $\mathrm{N} \cdot \mathrm{m}$ are also called joules (J) $\mathrm{W}=\int \mathrm{F} d s$

Work

2 categories of Work

Work done against another force
Lift something - exerted against force of gravity
Work done to change the speed of something
Stopping a car or speeding it up

How would you calculate the work in this case?

What is the component of \mathbf{F} in the direction of \mathbf{d} ?
Only the component of the force that is in the direction of the objects displacement does work!
$F \cos \theta$
$W=F \cos \theta d$

When \mathbf{F} and $\boldsymbol{\Delta d}$ are not parallel, we can use components to calculate the work done.

Work - Further explained

If the displacement is zero, no work is done by the force.
Example, if you hold a heavy box without moving it, you are exerting a force (counteracting the force of gravity) but you are not doing work.

If the net force is zero, now work is done by the displacement (change in location) of the object.

Example if a cart is sliding across a frictionless air track at a constant velocity, the net force on the cart is zero, which means no work is being done

If the displacement is perpendicular to the direction of the applied force, no work is done by the force.

Example you can slide a very heavy object along a roller conveyor because the force of gravity is acting vertically and the object's displacement is horizontal, which means gravity is doing no work, and therefore you do nave have to do any work against gravity.

Graph of Force vs. Displacement

Assume that a constant force F acts through a parallel displacement Dx.

The area under the curve is equal to the work done.

$$
\begin{aligned}
& \text { Work }=\mathrm{F}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \\
& \\
& \text { Work }=F \Delta x
\end{aligned}
$$

Conservative and non conservative forces

Two classes of forces

Conservative - a force that conserves energy. That is the amount of WORK done by the force changes the ENERGY by the same amount. Gravity is a great example of a conservative force, or really and field force

The work done by conservative forces is path independent

Non-conservative forces do not conserve energy. Friction is an example The work done by non-conservative forces is path dependent

Example - dragging a box along a floor with friction across a room. You could take the shortest route or a winding one. Friction would cause more work from this longer route

positive vs negative work

Work of a Force at an Angle

Work $=(70 \mathrm{~N}) \operatorname{Cos} 60^{\circ}(12 \mathrm{~m})=420 \mathrm{~J}$

Work $=420 \mathrm{~J}$
Only the x-component of the force does work!

