Momentum and Collisions

AP Physics Unit 5

Learning Goals: Momentum and Collisions

O Define the linear momentum of an object and explain how it differs from KE

O Explain the conditions under which the total momentum of a system is constant and why total momentum is constant in a collision

Identify the differences and similarities between elastic, inelastic, and completely inelastic collisions

O Apply conservation of momentum and ME to problems involving elastic collisions

Formula's on AP Equation Sheet

$\circ \mathbf{p}=\mathbf{m v}$
momentum w/ mass \& velocity momentum is a Vector!!
○ $\Delta p=F \Delta t$
momentum w/ force \& time

Exam Tip:

Momentum - lower case p
Power - capital P

Momentum

Momentum (\mathbf{p}) can be defined as "mass in motion." All objects have mass; so if an object is moving, then it has momentum

- Vector Quantity that depends on objects:
- Speed
- Mass
- Direction of motion
- Momentum is constant if there are no unbalanced forces acting on your defined system
- When to use:
- Collisions
- Whenis a force being applied over some time interval
- Discussing a systems center of mass

Momentum vs KE

- Momentum depends on Velocity
- Vector

KE depends on speed

- Scalar

Can smaller objects ever have as much momentum as a large object?

Yes, but smaller mass object has to move with a higher velocity

Conservation of Momentum

When a collision occurs in an isolated system, the total momentum of the system is conserved both in magnitude and direction.

"Isolated system" means there's no external net force acting on the system
-

- Example: carts and tracks, momentum is conserved as long as friction is negligible.

Like with energy conservation, total momentum is conserved in a collision, but momentum can be transferred from one object to another within the system.

Conservation of Momentum

$$
m_{1} \mathbf{v}_{\mathbf{1}, \mathbf{i}}+m_{2} \mathbf{v}_{\mathbf{2}, \mathbf{i}}=m_{1} \mathbf{v}_{\mathbf{1}, \mathbf{f}}+m_{2} \mathbf{v}_{\mathbf{2}, \mathbf{f}}
$$

total initial momentum $=$ total final momentum

Conservation of Momentum

- IF the next external force exerted on a system is zero, the total momentum of the system is constant
$\mathbf{p}_{\text {total }, \mathrm{f}}=\mathbf{p}_{\text {total }, \mathrm{i}}$
- Change in Momentum also equal to
$\circ \Delta \mathbf{p}=\mathbf{m} \mathbf{V}_{\mathrm{f}}-\mathbf{m} \mathbf{V}_{\mathrm{i}}$

Conservation of Momentum

 ProblemExample: A 76 kg boater, initially at rest in a stationary 45 kg boat, steps out of the boat and onto the dock. If the boater moves out of the boat with a velocity of $2.5 \mathrm{~m} / \mathrm{s}$ to the right, what is the final velocity of the boat?

Diagram: $\quad m_{1}=76 \mathrm{~kg}$
$\mathbf{v}_{\mathbf{1 , f}}=2.5 \mathrm{~m} / \mathrm{s}$
Given:
Man

$$
\begin{aligned}
\overline{m_{\text {man }}} & =76 \mathrm{~kg} \\
\mathrm{v}_{\text {mann }, \mathrm{i}} & =0 \\
\mathrm{v}_{\text {man }, \mathrm{f}} & =2.5 \mathrm{~m} / \mathrm{s} \text { (right) }
\end{aligned}
$$

$$
\begin{aligned}
\frac{\text { Boat }}{m_{\text {Boat }}} & =45 \mathrm{~kg} \\
\mathrm{v}_{\text {Boat } \mathrm{i}} & =0 \\
\mathrm{v}_{\text {Boat }, \mathrm{f}} & =?
\end{aligned}
$$

Conservation of Momentum Problem

Both man and Boat start from rest
Soln:

$$
1
$$

$m_{\text {man }}$

man $V_{m a n}$
$m_{\text {Boat }} \mathbf{V}_{\text {Boat }, \mathrm{f}}=-m_{\text {man }} \mathrm{V}_{\text {man }, \mathrm{f}}$
$\mathbf{V}_{\text {Boat }, \mathrm{f}}=-\left(m_{\operatorname{man}} / m_{\text {Boat }}\right) V_{\text {man }, \mathrm{f}}$
$\mathrm{V}_{\text {Boat }, \mathrm{f}}=-(76 \mathrm{~kg} / 45 \mathrm{~kg})(2.5 \mathrm{~m} / \mathrm{s})$
$\mathbf{V}_{\text {Boat, }, f}=-4.2 \mathrm{~m} / \mathrm{s}$
or $4.2 \mathrm{~m} / \mathrm{s}$ to the left

Impulse

IMPULSE (J) is a measure of how much force is applied for how much time, and it's equal to the change in momentum.
or

- Is the change in momentum, and results from force acting over a period of time

Impulse - Momentum Theorem

The impulse due to all forces acting on an object (the net force) is equal to the change in momentum of the object:

- Explains follow through in sports:
- longer contact \longrightarrow greater change in momentum
- Force is reduced when the time interval of an impact is increased

Impulse - Momentum Example

A 1.3 kg ball is coming straight at a 75 kg soccer player at $13 \mathrm{~m} / \mathrm{s}$ who kicks it in the exact opposite direction at $22 \mathrm{~m} / \mathrm{s}$ with an average force of 1200 N . How long are his foot and the ball in contact?
answer:
$F_{\text {net }} t=\Delta p$.
$\Delta p=m \Delta v=m\left(v_{f}-v_{0}\right)$ Since the ball changes direction
$\Delta p=1.3 \mathrm{~kg}[22 \mathrm{~m} / \mathrm{s}-(-13 \mathrm{~m} / \mathrm{s})]$
$\Delta p=46 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
(1200N) $t=46 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$.
$\mathrm{t}=0.038 \mathrm{~s}$

During this contact time the ball compresses substantially and then decompresses. This happens too quickly for us to see, though. This compression occurs in many cases, such as hitting a baseball or golf ball.

If the object has a mass of 2.0 kg , what was the object's change in momentum? velocity?

$$
\begin{array}{rlrl}
\boldsymbol{\Delta p}=\mathbf{F} \boldsymbol{\Delta} \mathbf{t} & \vec{p}=m \Delta \vec{v}=\vec{F} \Delta t \\
\text { Impulse } & =\mathrm{F} \cdot \mathrm{t} & \Delta \vec{v}=\vec{F} \Delta t / \boldsymbol{m} \\
\text { Impulse } & =\text { Area under F} \cdot \mathrm{t} & \\
& =1 / 2 \mathrm{bh}=.5 \times 40 \times 4=80 \mathrm{~N} \cdot \mathrm{~s} & \Delta \vec{v}=\frac{\mathbf{6 0 ~ N} \cdot \boldsymbol{s}}{\mathbf{2 . 0 ~ \mathbf { k g }}} \\
& =1 / 2 \mathrm{bh}=1 / 2 \times 20 \times 2=20 \mathrm{~N} \cdot \mathrm{~s} & & \Delta \overrightarrow{\mathbf{v}}=\mathbf{3 0} \frac{\mathrm{m}}{\mathbf{s}}
\end{array}
$$

