States of Matter and IMF

AP Chemistry – Unit 7

Learning Goals

- Utilize particulate diagrams to identify different states of matter and determine type(s) of intermolecular forces of attraction
- Identify intramolecular attractions (bond type), polarity of molecules and intermolecular attractions making use of Coulomb's law to determine strength
- Apply knowledge of bonding and intermolecular attractive forces to explain physical properties such as evaporation, solubility, melting points, boiling points, vapor pressures and physical states of matter.
- Identify intramolecular attractions (bond type), polarity of molecules and intermolecular attractions making use of Coulomb's law to determine strength
- Apply knowledge of bonding and intermolecular attractive forces to explain physical properties such as evaporation, solubility, melting points, boiling points, vapor pressures and physical states of matter
- Explain whether changes are physical or chemical according to types of attractive forces (intramolecular or intermolecular) that must be overcome
- Use separation techniques in the laboratory explaining results using intermolecular attractive forces

.

Intramolecular Forces vs. Intermolecular Forces

- Intramolecular Forces
 - Within the molecule
 - Molecules are formed by sharing or transfer of electrons between the atoms
- Intermolecular Forces forces that hold one molecule to another molecule
 - These forces arise from the unequal distribution of the electrons in the molecule and the electrostatic attraction between oppositely charged portions of a molecule
 - Between molecules
 - Dipole-Dipole
 - Hydrogen Bonding
 - London Dispersion Forces

Intramolecular forces are stronger than intermolecular forces!

Dotted lines are the IMFs between the water molecules

1. Dipole-Dipole Forces

Dipole-Dipole

- Attractive forces between the positive end of one polar molecule and the negative end of another polar molecule.
- They are much weaker than ionic or covalent bonds and have a significant effect only when the molecules involved are close together (touching or almost touching).
- Molecules can attract each other electrostatically, lining up so that the positive and negative ends are close to each other
- Only ~1% as strong as covalent or ionic bonds

Ion-induced dipole

- The attraction force between an charged ion and a nonpolar molecule
- The ion induces the electron cloud of the nonpolar molecule and polarizes, forming a temporary dipole

• Dipole – Induced Dipole

- The attraction between a polar molecule and a nonpolar molecule
- Large molecules are more polarizable than smaller molecules since they contain more electrons!

Dipole-dipole Forces

2. Hydrogen Bonding

- The force of attraction between the hydrogen atom of one molecules and an unshared electron pair of electrons F, O, or N of a neighboring molecule
- Strongest IMF
- Hydrogen is then electrostatically attracted to a lone pair on the electronegative atom or adjacent molecules

3. London Dispersion Forces – aka Van der Waal Forces

- Instantaneous dipole moments resulting from the motion of electrons inside an atom or molecule
- ALL atoms and molecules possess LDF
- LDF increases with the number of elections in the molecule
- Significant in large atoms/molecules
- Occurs in all molecules, including nonpolar
 - Primary force in nonpolar molecules
- London dispersion forces are due to the formation
 of instantaneous dipole moments in polar or nonpolar
 molecules as a result of short-lived fluctuations of electron
 charge distribution

London Dispersion Forces

Summary of Intermolecular Forces

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Nonbonding (Inte	ermolecular)			
Ion-dipole		Ion charge- dipole charge	40-600	Na+····O
H bond	δ δ ⁺ δ δ - -A-H·····:B-	Polar bond to H- dipole charge (high EN of N, O, I	10-40 F)	:Ö—н;Ö—н Н Н
Dipole-dipole	_	Dipole charges	5-25	I-CII-CI
Ion-induced dipole		Ion charge— polarizable e cloud	3-15	Fe ²⁺ ····O ₂
Dipole-induced dipole		Dipole charge— polarizable e— cloud	2-10	H-CICI-CI
Dispersion (London)		Polarizable e clouds	0.05-40	F-F····F-F

Liquid State - IMF

Concave Meniscus Formed By Polar water molecules

Convex Meniscus Formed By Nonpolar Liquid Mercury

Liquids

• Low compressibility, lack of rigidity, and high density compared with gases.

All Three properties are GREATER for liquids composed of polar molecules since their IMF's are greater than nonpolar molecules

- Surface tension resistance of a liquid to an increase in its surface area
 - Liquids with large intermolecular forces tend to have high surface tensions.
- Capillary action spontaneous rising of a liquid in a narrow tube:
 - Cohesive forces IMF among the molecules of the liquid.
 - Adhesive forces IMF between the liquid molecules and their container.
 - Used in Chromatography
- **Viscosity** measure of a liquid's resistance to flow:
 - Liquids with large intermolecular forces or molecular complexity tend to be highly viscous.

SURFACE TENSION

Molecular Size affect on IMF

London Dispersion forces are present between all molecules, whether they are polar or nonpolar

- Larger and heavier atoms and molecules exhibit stronger dispersion forces than smaller and lighter ones.
- In a larger atom or molecule, the valence electrons are, on average, farther from the nuclei than in a smaller atom or molecule. They are less tightly held and can more easily form temporary dipoles.
- The ease with which the electron distribution around an atom or molecule can be distorted is called the *polarizability*.

London dispersion forces tend to be:

- stronger between molecules that are easily polarized
- weaker between molecules that are not easily polarized

Methane 16 g/mol –161.5°C

Ethane 30 g/mol -88.6°C

Propane 44 g/mol –42.1°C *n*-Butane 58 g/mol −0.5°C

(a) Increasing mass and boiling point

2,2-Dimethylpropane (neopentane) 72 g/mol, 9.5°C

n-Pentane 72 g/mol, 36.1°C

(b) Increasing surface area and boiling point

Melting & Boiling Points - IMF

Melting and Boling Points

- In General, the stronger the IMF, the higher the melting and boiling points
- The Boiling points of covalent hydrides of the elements in groups 4A, 5A,
 6A, an 7A in graph

Solids

Solids

1. Amorphous Solids:

- Disorder in the structures
- Glass

2. Crystalline Solids:

- Ordered Structures
- Unit Cells
- Examples of Three Types of Crystalline Solids

Crystalline forms	Non-crystalline forms (amorphous forms)		
1. A crystalline form has regular	A non-crystalline form irregular		
arrangement of atoms.	arrangement of atoms.		
Structure of crystalline form:	Structure of non-crystalline form:		
2. They have a definite geometrical	They have irregular shapes.		
shape.			
3. They have sharp melting points.	They melt over a range of temperature.		
4. Carbon exists in three crystalline	Carbon exists in three amorphous forms		
forms which are diamond, graphite and	which are coal, charcoal and coke.		
fullerene.			

Alloys

Two Types of Alloys

- **Substitutional alloy** some of the host metal atoms are *replaced* by other metal atoms of similar size.
 - Brass
- Interstitial alloy some of the holes in the closest packed metal structure are occupied by small atoms.
 - Steel

