	page 12	Name Ke?	
, O.	page 12	Period	Date
Vorksheet: Determining Kinetic Energy		T CHOO	
(Frameworks Code)			
Recall that the formula for calculating kinetic energ following problems. Be sure to show the four step	set-up.	÷	
W= 47Kg V= 31 mls KE=? 2. A 725 kg automobile has a kinetic energy of velocity? SolA: KE = ½ m Y= ? W= 725 Kg V=? KE = 302,000 J KE = 302,000 J	2 m/ 2 (47 kg)(31 2 2 5 8 3 . 5 . 302,000 J as it to V XE M []	avels along the his 2 = 2 (302,000) V= 28.9 m/s vas a mass of 0.14	ghway. What is the car's 6 kg, what is its kinetic
4. A bullet train can reach speed of 76.4 m/s. W	hat is the mass	of a train that rea	ches this speed if its total
KE = 2,780,000 J 5. A polar bear with a mass of 500 kg has 60,50	\= <u>2 KE</u> V ² 00 J of kinetic e	m = 952 nergy. How fast is	176.4m/s)2 544.1 Kg
Solo: $KE = \frac{1}{2}mV$ V=? KE = 60.5 COT 6. A pigeon flies with a velocity of 5.1 m/s. If Solo: $KE = \frac{1}{2}mV$ V: 5.1 m/s W= 2 KE 7. The kinetic energy of a golf ball is measured what is its speed? Solo: $KE = \frac{1}{2}mV$	it has 46.8 J of V2	kinetic energy $\frac{2(46.85)}{(5.1 \text{ m/s})^2}$ f the golf ball has	m=3.6 kg a mass of about 0.047 kg,
W= .047K9 V=? KE= 143.3 T 8. A ping-pong ball has a mass of about 2.45 g	KE N	(.047 K	9 V=78.1 mls
m/s. What is its kinetic energy? 6iven: m= 2.45g = .00245 Kg V= 4.0 m/s	ジ KE= セ = セ	. 7)(4.0 m/s)2
KE=?			