HOLT PHYSICS

Concept Review

Sound Intensity and Resonance

Refer to the following table to answer the following questions.

Intensity (W/m²)	Decibel level (dB)
1.0×10^{-9}	30
1.0×10^{-8}	40
1.0×10^{-7}	50
1.0×10^{-6}	60

Intensity (W/m²)	Decibel level (dB)
1.0×10^{-5}	70
1.0×10^{-4}	80
1.0×10^{-3}	90
1.0×10^{-2}	100

- 1. While practicing his instrument at home, a young drummer produces sounds with 0.5 W of power. Assume the sound waves spread spherically, with no absorption in the medium.
 - **a.** What is the intensity of the sound waves that reach the walls of his room 2.00 to 4.00 m from the drum?
 - **b.** What is the intensity of the sound waves that reach the family room, 8.00 to 12.0 m from the drum?
 - **c.** What is the intensity and approximate decibel level of the sound waves that reach the neighbors' home 50.0 m away?
- 2. The sound level 5.00 meters away from a jackhammer is exactly 100 dB.
 - a. What is the intensity of the sound at that point?
 - **b.** What is the power of the sound from the jackhammer?
 - **c.** At what distance from the jackhammer will the noise intensity decrease to $1.00 \times 10^{-8} \text{ W/m}^2$?