AP Chemistry - Unif1 - Pretest - KEY

4. ANS: D

Estimate! The molar mass of X is close to 75 and the percentage of oxygen is close to 25%.

 X_2O_{--} 2 ? 75 = 150 + 16 = 166, closer to 10% oxygen present

XO-- 75 + 16 = 91, so less than 20% oxygen present

 XO_{2} -- 75 + 32 = 107, so way more than 25% oxygen present

 X_2O_3 -- 150 + about 50 = 200, so 50/200 = 25/100 which is mighty close to 25%!

DIF: Easy

TOP: Stoichiometry OBJ: 1.1, SP 6.1

NOT: 74% answered correctly MSC: 1989 #25

5. ANS: C

Expect easy math! Estimate!

2 L is about 1/10 of 22.4 L which is the molar volume of any gas at STP. So 4 g is then about 1/10 of the molar mass of the gas we seek which puts us in the neighborhood of 40ish. Since S has a molar mass of 32, the 2 oxygens make it too heavy. Nitrogen has a molar mass of only 28 and ammonia is a measly 17. Carbon dioxide has a molar mass of 44 and is our winner.

DIF: Medium

TOP: Stoichiometry OBJ: 1.4, SP 7.1

MSC: 2002 #66

NOT: 41% answered correctly

6. ANS: B

Examine the mass spectrum again. The 204 bar is negligible. The 208 bar is about twice as tall as either of the 206 bar, so the "extra" difference in height between the 208 bar and the 206 bar averages to 207 leading to a average atomic mass around 207 amu.

OBJ: 1.14, SP 1.4, 1.5

TOP: Stoichiometry

7. ANS: D

Expect easy math! Since the two isotopes weigh 63 and 65, and the average is not 64 (a 50%-50% blend), but rather 63.55, you know answers (A), (B) and (C) can't be correct.

The average lies almost half way between the 50% blend, so 25% it is, Answer (D).

DIF: Medium

OBJ: 1.1, SP 6.1 TOP: Stoichiometry

MSC: 2002 #43

NOT: 49% answered correctly

8. ANS: B

You were only given one starting amount (and it says excess hydrogen), so you have not entered the "land of limiting reactant". Whew! You were given the number of moles of reactant, but must calculate the mass of the product which will require that you supply a balanced equation. 2x0.050 = 0.100 Moles

 $Au_2S_3 + H_2 \rightarrow Au + H_xS_y$

If 0.0500 moles of Au₂S₃ completely reacts (not a limiting reactant), then 0.100 moles of Au was formed. The MM of Au is 197, so 1/10 mole ? 197 g/mol = 19.7 g

DIF: Medium

OBJ: 1.4, SP 7.1 TOP: Stoichiometry

MSC: 1999 #20

NOT: 55% answered correctly

AP Chemistry - Unit 1 - Fretest - KEY

10. ANS: C

Expect easy math! Notice that all of the amounts are simple multiples of the smallest amount given, 0.55 mol. So, simplify into "parts": K = 2, Te = 1 and O = 3 giving an empirical formula of $K_2 TeO_3$

DIF: Easy

TOP: Stoichiometry OBJ: 1.2, SP 6.1

MSC: 2002 #24

NOT: 82% answered correctly

15. ANS: B

Two starting amounts...your limiting reactant alarms should be sounding.

Expect easy math! When given a concentration and volume, use Molarity × V to calculate the number of moles present. Don't forget to track the total volume (20 + 30 = 50 mL).

For Ba²⁺: $(0.200 M \times 20.0 \text{ mL}) + (0.400 M \times 30.0 \text{ mL}) = 4.00 \text{ mmol} + 12.0 \text{ mmol}$ So, 4.00 mmol of ppt. forms, and 8.00 mmol of excess, unreacted barium ion remains in 50 mL of solution. 8 mmol/50 mL (the milli's cancel) which is equivalent to 16/100 and you get an answer of 0.16 M.

DIF: Medium

TOP: Stoichiometry OBJ: 1.4, SP 7.1

MSC: 1984 #68

NOT: 48% answered correctly

16. ANS: A

The "trick" to getting this one correct is to recognize that you have entered the "land of limiting reagent"! You were given the number of moles of silver, but must calculate the moles of nitric acid, it's two starting amounts either way! Remember that molarity × liters = moles. Determine the limiting reagent and calculate

subsequent moles from that limiting amount of moles using the mole:mole.

subsequent moles from	that minting amount of A		1	
3 Ag	+ 4 HNO ₃	\rightleftarrows 3 AgNO ₃	+ NO	+ 2 H ₂ O
mole:mole 3 X	4 X	3	Х	2
# moles 0.10	=(0.010		If 4 = 0.060, what's "1"	
divide by $3 = 0.033$	= 0.060 mol divide by $4 = 0.015$,		equal? 0.015 moles NO formed	
3x = .1	compare to 0.033 LIMITING! work from this now		140 formed	
•	this now x = .015	X=0.	015!	

DIF: Medium

TOP: Stoichiometry OBJ: 1.4, SP 7.1

MSC: 1984 #52

NOT: 63% answered correctly

17. ANS: B

Expect easy math! 9 grams of Al is
$$1/3$$
 mole.
 $1/3$ mole.

 $6 \text{ HCl} \rightarrow 2 \text{ AlCl}_3 +$ 2 Al +1/3 mol

therefore divide 1/3 by 2 and multiply by 3 which equal 0.5 mol or 11.2 liters at STP

DIF: Hard

OBJ: 1.4, SP 7.1

TOP: Stoichiometry

MSC: 1984 #85

NOT: 30% answered correctly

I mole AI (3 molette) ZZAL

= (ZZ.4L)

= 11.ZL

Ap Chemistry - Unit 1 - Pretest - KEY

18. ANS: A

Expect easy math! Think in round numbers of 35 and 37 as the masses of the 2 isotopes. If both isotopes were in the same abundance, then the average would be 36. BUT, alas it's not...it's stated as about 35.5 so the sample should contain mostly the 35 amu isotope (tall bar on the graph) with a bit of the 37 isotope (much shorter bar on the graph) present to raise the average above 35 but not to 36.

OBJ: 1.14, SP 1.4, 1.5

TOP: Stoichiometry

20. ANS: C

Expect easy math and ESTIMATE!

Also, resist the urge to get an exact answer. AND look for easy math groupings rather than always working solely from left to right. For instance $0.05 \times 100 = 5$ (move the decimal to the right twice) and $5 \times 6 = 30$ and you're done! The "math" answer choices will be spread apart enough in magnitude to allow for serious estimation. Units will save your hide in such cases as well.

$$\frac{6 \text{ mol}}{L} \times 0.05 \text{ L} \times \frac{\approx 100 \text{ g}}{\text{mol}} \approx 30 \text{ g}$$

DIF: Easy

TOP: Solutions OBJ: 1.4, SP 7.1

MSC: 1989 #15

NOT: 88% answered correctly

21. ANS: D

A classic "hydrocarbon burned...what's the empirical formula?" what's the molecular formula?" type of problem.

Expect easy math!

moles $CO_2 = 88/44 = 2$ moles CO_2 , therefore 2 moles C

moles $H_2O = 27/18 = 1.5$ moles water, therefore 3.0 moles hydrogen

EF = C₂H₃ which is not an answer choice, so double, triple, quadruple, etc.

C₄ H₆ has the same ratio as our empirical formula.

DIF: Medium

TOP: Stoichiometry

MSC: 1984 #73

NOT: 44% answered correctly

AP Chemistry-Unit 1 - Pretest - KEY

23. ANS: C

Expect easy math and estimate!

A gas's density at STP is calculated using this formula : $\frac{MM}{22.4 \text{ L/mol}}$ so, MM = (density ? 22.4 L/mol)

L/mol) = (about 2 g/L ? 22.4 L/mol) = about 45ish g/mol, so C₃H₆ is the best answer choice.

DIF: Medium

OBJ: 1.1, SP 6.1 TOP: Stoichiometry

MSC: 1994 #33

NOT: 52% answered correctly

24. ANS: D

The "trick" to getting this one correct is to recognize that you have entered the "land of limiting reagent"! You were given the number of moles of *three* reactants. Determine the limiting reagent. Start by using I₂ since it is the smallest starting amount coupled with the highest coefficient.

If 5 = 2.5 mol, then 10 = 5.0 mol. Calculate *subsequent moles* (if 10 = 5 mol, then 1 = 1/2 mol, so 2 = 1.0 mol and 3 = 1.5 mol) from that limiting amount of moles using the mole:mole.

10 HI	2 KMnO ₄	3 H ₂ SO ₄	\rightarrow	5 I ₂	2 MnSO ₄	K ₂ SO ₄	8 H ₂ O
? mol	4.0 mol	3.0 mol		2.5 mol			
5.0 mol	1.0 mol, so plenty is available	1.5 mol, so plenty is available		limit!			

DIF: Easy

OBJ: 1.4, SP 7.1 TOP: Stoichiometry

MSC: 1999 #55

NOT: 69% answered correctly

25. ANS: A

The "trick" to getting this one correct is to recognize that you have entered the "land of limiting reagent"! You were given two starting amounts. Determine the limiting reagent and calculate subsequent moles from

that limiting amount of moles using the mole:mole.

2 N ₂ H ₄	+ N ₂ O ₄	ightleftarrow	+ 3 N ₂	+ 4 H ₂ O
mole:mole 2	1		3	4
# moles $(8/32) =$	= (92/92) = 1 mol			4(0.125) = 0.50
0.25			ALL CONTROL OF THE PROPERTY OF	mol, therefore 9.0
	Excess! Not limiting.	l		g since molar mass
IF $2 = 0.25$ mol, then				of water is 18g
1 = 0.125, so this is				
clearly the				
LIMITING reactant.				
Work from this				
number				

DIF: Medium

OBJ: 1.4, SP 7.1 TOP: Stoichiometry

MSC: 2002 #58

NOT: 47% answered correctly

AP Chemistry - Unit 1 - Pretest /2
DEinen:
0.2800 g Sample Ca CO3 + MgCO3 hected CO2 produced
NAMES AND ASSOCIATION OF THE PROPERTY OF THE P
To the second
Soln:
(750.mmHg) (1 Atm) = 0.988 Atm 75.0 ml) (1 L) = 0.0750 L
20°C+273 = 293 K
PY=nRT
N= PV (0.987 Atrix) (0.0750K) = 3.08 ×10 ⁻³ mole COZ RT (0.0821 KATER) (293K)
RT (0.0821 Maix) (293K)
3.08 × 10-3 mole (Oz) (44.01 g COz) = [0.136 g COz]
B) Calosis) A Cozigs + Calois, Mglos A Cozigs + Mglos
C) 0.2800 g SAMple of CaCOz 4Mg COz has 0.0448 g Ca
? 70 mass of Sample is Cally
? % mass of sample is Calog 0.0448gCa) (Inole Ca) (Inole Ca) (100.09g Cally) = 0.112g 40.09gCa) (Inole Ca) (Inole Ca) (Inole Cally) = 0.112g
0.1129 Laco3 = 40.08 (all)

D) ? g MgO produced 0-168g MgCoz/Inde MgCoz/Inde MgO /40,30g MgO 1 84.31g MgCoz/Inde MgCoz/Inde MgCoz/Inde MgO -. 112 g laloz 0.168 g Mg COz

=0.0803gMg0

FR 42

ii) Mass 92 of N 28.84% of Compound SAmple ?g N in 1.2359g SAmple

iii) ?g Oin. 1.2359g sample 1.23599 SAMPLE LASHO - 0.35649 N

-0.06489 H

-0.6116 g C

0.203190

iv) Empirical famula?