DATE

Fill each blank below with the word or phrase that completes the statement.

CLASS

HOLT PHYSICS

MODULE 11

Hooke's Law

1.	Objects oscillate back and forth when subjected to a Restoring force
2.	A restoring force is always directed toward a central Equil: brium force
3.	The net force at the equilibrium position is
4.	The of the restoring force is proportional to the from the equilibrium position.
5.	restoring force and displacement from the Equilibrium position
6.	If the free end of a spring is stretched or compressed, a restoring force acts in the proside direction.
7.	The Soine Corstant is a ratio of the restoring

8. The spring constant is an indicator of a spring's stiffness. As values for the spring constant increase, the stiffness fined and more force is needed to stretch or the spring.

9. A certain spring has a force constant equal to one-half the force constant of a second spring. Which spring requires the least force to compress it? Which is stiffer?

force to the displacement, so its units are ______NM

As Soring because it has the larger force

Constant

MODILLE	
11	

10. Which will provide a softer bed, a box-spring set containing springs with greater or lesser spring constants?

less spring constants for soften Bods

11. A spring with an equilibrium position at 12.0 cm hangs vertically. When a 7.50 kg mass is attached to the spring, it stretches the spring to 17.0 cm. What would be the length of the spring with a 4.50 kg mass attached to it?

What would be the length of the spring with a 4.50 kg that a tracklet
$$K = \frac{7.50 \text{ kg}}{(7.50 \text{ kg})(9.81 \text{ m/s}^2)}$$

$$K = \frac{mg}{K}$$

$$K = \frac{mg}{1500 \text{ N/m}}$$

12. If the spring in item 11 were in a scale and that scale were marked every 10 N, what would be the distance between markings?

$$K = 1500 \, \text{m/m}$$

$$X = -\frac{F}{K}$$

$$= -\frac{10D}{1500 \text{ H/m}}$$

$$X = 6.7 \times 10^{-3} \text{ m}$$

$$= -\frac{10D}{1500 \text{ H/m}}$$

F = - KX

X could be either

13. A certain spring has a force constant of 5.0 N/m. Find the mass in grams that must be hung from the spring to stretch it 20 cm. How much more mass is needed to stretch it 20 cm more?
A) F = -KX
B) 3+retch Another 20 cm.

$$F = -KX$$
 $F = mg$
 $m = -KX$
 g

= (5.0 N/m)(7.20m)

 $g = \sqrt{9.81 \text{ m/s}^2}$

To Stretchanother
Zocm, & Spring
Constant same
would need
additional