3 Types of Acceleration

- Tc = tangential acceleration

$$
a_{T}=r \alpha
$$

Units - m/s ${ }^{2}$

Tangential Acceleration
$\alpha=$ angular acceleration
$\alpha=\frac{\Delta \omega}{\Delta t}$
Units - rad/s ${ }^{2}$
$\mathrm{a}_{\mathrm{c}}=$ Centripetal acceleration

$\mathbf{a}_{\mathrm{c}}=\frac{v^{2}}{r}=r \omega^{2}$
Units - m/s ${ }^{2}$

Tangential Acceleration

Tangential acceleration, a_{T}

Results from changing the speed of rotation
The linear and tangential accelerations are the same but in the tangential direction, which leads to the circular motion.

So, we have two vectors, making angle of 90 and the resultant makes 30 degree with one of them.

Angular acceleration, $\mathbf{\alpha}$

Also called rotational acceleration

- the change in angular
 velocity that a spinning object undergoes per unit time
- $\alpha=$ angular acceleration

$$
\alpha=\frac{\Delta \omega}{\Delta t}
$$

Units - rad/s ${ }^{2}$

Angular Acceleration - Examples

- Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest, or when a computer's hard disk slows to a halt when switched off.
- In all these cases, there is an angular acceleration, in which ω changes. The faster the change occurs, the greater the angular acceleration.

Angular Acceleration

Angular vs Tangential acceleration

- Angular acceleration, α, is the change in angular velocity divided by time $\alpha=\frac{\Delta \omega}{\Delta t}$
- While Tangential acceleration is the change in linear velocity divided by time.
- Angular acceleration does not change with radius, but tangential acceleration does.
- These equations mean that linear acceleration and angular acceleration are directly proportional. The greater the angular acceleration is, the larger the linear (tangential) acceleration is, and vice versa.

Centripetal Acceleration

An object, in circular motion, with a constant speed, will there be acceleration?

Yes: acceleration is vector (both magnitude and direction) and the direction is constantly changing

An acceleration of this nature is called centripetal acceleration

Term that describes a change in speed of an object in circular motion
Which results from change in direction
Example: car on circular track, constant speed, but changing direction = centripetal acceleration

Centripetal acceleration - Cont

(a) As the particle moves from A to B, the direction of the particle's velocity vector changes.
(b) For short time intervals, Δv is directed toward the center of the circle.

Centripetal acceleration is always directed toward the center of a circle.

Centripetal acceleration - Cont

You have seen that centripetal acceleration results from a change in direction.

In circular motion, an acceleration due to a change in speed is called tangential acceleration.

To understand the difference between centripetal and tangential acceleration, consider a car traveling in a circular track.

Because the car is moving in a circle, the car has a centripetal component of acceleration.
If the car's speed changes, the car also has a tangential component of acceleration.

Tangential vs Centripetal Acceleration

- One of the key differences between centripetal acceleration and tangential acceleration:

Centripetal acceleration is the radial component of the net acceleration
tangential acceleration is the tangential component of the net acceleration acting on the object moving in a circular

Angular
Acceleration
pointing
towards the
observer direction.

Angular vs Centripetal Acceleration

Is angular acceleration same as centripetal acceleration?
They cannot be the same thing because they have different units.
Centripetal acceleration $a_{c}=v^{2} / R=\omega^{2} R$ units of $\mathrm{m} / \mathrm{s}^{2}$,
while angular acceleration $\alpha=\frac{\Delta \omega}{\Delta t}$
units of radian/s ${ }^{2}$

What is the minimum centripetal acceleration the coaster needs (at the top) so that people don't fall out?

$$
\begin{aligned}
a_{c} & =\frac{v^{2}}{r} \\
9.8 & =\frac{v^{2}}{6.85} \\
v & =8.2 \mathrm{~m} / \mathrm{s} \\
v & =18 \mathrm{mi} / \mathrm{hr}
\end{aligned}
$$

Centripetal Force

- Centripetal force $\left(\mathrm{F}_{\mathrm{c}}\right)$ is a force that makes a body follow a curved path
Without a centripetal force, an object in motion continues along a straightline path.
With a centripetal force, an object in motion will be accelerated and
 change its direction

Centripetal force is directed toward the center of the circle

- Centripetal force is simply the name given to the net force on an object in uniform circular motion

Centripetal Force

Any type of force or combination of forces can provide this Centripetal force (net force)

Example: Friction between a race car's tires and circular track is a centripetal force that keeps the car in a circular path

Example: Gravitational force is a centripetal force that keeps the moon in its orbit

Example: A mass on a string being whirled in a horizontal circular path. The string is the centripetal force

Analyzing motion in a circle

Centripetal Force

"Centripetal" means "toward the center" - centripetal force and centripetal acceleration are a necessary part of circular motion

Centripetal Force

Many things people see or experience as "centrifugal force" are inertia - and a centripetal force that isn't big enough to create uniform circular motion

For example, when turning in your car you slide on your seat toward the outside of the curve - there's no force toward the outside - there just isn't enough frictional force to give you the same centripetal acceleration that the car has

Definition:

Centripetal - Center seeking Centrifugal - Misconception "center fleeing" - Centrifugal is a fictious acceleration present in a rotating frame of reference

Centripetal Forces

- Consider a ball of mass \boldsymbol{m} that is being whirled in a horizontal circular path of radius r with constant speed

The force exerted by the string has horizontal and vertical components. The vertical component is equal and opposite to the gravitational force. Thus, the horizontal component is the net force.

- This net force, which is is directed toward the center of the circle, is a centripetal force

Centripetal Forces continued

- Centripetal force is simply the name given to the net force on an object in uniform circular motion.

Any type of force or combination of forces can provide this net force.

For example, friction between a race car's tires and a circular track is a centripetal force that keeps the car in a circular path.

As another example, gravitational force is a centripetal force that keeps the moon in its orbit.

Centripetal Force Example

Centripetal Forces continued

If the centripetal force vanishes, the object stops moving in a circular path.

A ball that is on the end of a string is whirled in a vertical circular path.

If the string breaks at the position shown in (a), the ball will move vertically upward in free fall.

If the string breaks at the top of the ball's path, as in (b), the ball will move along a parabolic path.

(b)

Centripetal Forces continued

Newton's second law can be combined with the equation for centripetal acceleration to derive an equation for centripetal force:

mass $\times(\text { tangential speed })^{2}$
radius of circular path

2 Types of Car problems - Fs usually used to find $\max V_{t}$

- On a flat curve
$\mathrm{F}_{\text {smax }}$ keeps car from sliding off road

What force keeps the car in the curve without slipping? Static Friction

On a banked curve

What keeps the car in the curve in this diagram? both static friction and the normal force

Centripetal Force

$$
\begin{aligned}
& \mathbf{F}= \mathbf{m a} \\
& \mathrm{a}_{\mathrm{c}}=\frac{v_{t}^{2}}{r}=\mathrm{r} \omega^{2} \\
& \mathbf{F}=\mathbf{m} \frac{v_{t}^{2}}{r} \\
& \mathbf{F}=\mathbf{m} \mathbf{r} \omega^{2}
\end{aligned}
$$

Conical Pendulum =>Tetherball

Forces causing circular motion (centripetal force)

Newton's 2nd Law tells us that all accelerations must be caused by a net force

If an object is in uniform circular motion, it has a centripetal acceleration, which must be caused by a net force.

In circular motion, we call this net force "centripetal force". Using Newton's 2nd Law:

$$
\mathrm{F}_{\mathrm{c}}=m \mathrm{a}_{\mathrm{c}}=\mathrm{m} v^{2} / \mathrm{r}
$$

It's important to remember that "Centripetal force" isn't a new force - it's a title that we give to whatever creates the net force that causes circular motion.

For instance, orbits are caused by gravity - the centripetal force on the moon is caused by the force of gravity between the moon and the Earth

Centripetal Force

- If the centripetal force vanishes, the object stops moving in a circular path

Inertia will cause the object to move in a direction tangent to the path

- Newton's $2^{\text {nd }}$ law combined with centripetal
acceleration forms an equation for centripetal force

centripetal force $=\frac{\text { mass } \times(\text { tangential speed })^{2}}{\text { radius of circular path }}$

Find the Tension in the cable. $\quad \mathbb{F}_{c}=m r(x)^{2}$
$\mathfrak{\sim}=10$ 。 $0 \mathrm{~m} \quad m=75 \mathrm{~kg}$

$$
\begin{aligned}
& =75 \cdot 10.0 \cdot 1_{0} 5^{2} \\
& =1690 \mathbb{N}
\end{aligned}
$$

$\omega=1.5 \mathrm{padl} / \mathrm{s}$
$T=$?

$$
\begin{aligned}
F_{g} & =m g \\
& =75 \cdot 9,8 \\
& =735 \mathbb{N}
\end{aligned}
$$

$$
T=\sqrt{1690^{2}+735^{2}}
$$

$=1840 \mathrm{~N}$

$$
T^{2}=\mathbb{F}_{c}^{2}+\mathbb{F}_{g}^{2}
$$

