DETERMINE RESULTANT USING TRIG FUNCTIONS (QUICK REVIEW)

Net Force (resultant, Hypotenuse) acting upon an object is determined by computing the vector sum of all the individual forces acting upon that object - Use trig functions for angles

" Pythagorean Theorem

$$
A^{2}+B^{2}=C^{2}
$$

- Only good for right angles
sine of angle $\theta=\frac{\text { opposite leg }}{\text { hypotenuse }}$
cosine of angle $\theta=\frac{\text { adjacent leg }}{\text { hypotenuse }}$

$$
\begin{aligned}
& \text { Tan }=y / x \\
& \operatorname{Sin}=y / r \\
& \operatorname{Cos}=x / r
\end{aligned}
$$

ANY VECTOR CAN BE EXPRESSED AS A SERIES OF COMPONENTS

You can often describe an object's motion more conveniently by breaking a single vector (Fn) into two components (Fx, Fy), or resolving the vector.

The components of a vector are the projections of the vector along the axes of a coordinate system.

Resolving a vector allows you to analyze the motion in each direction on the X and Y axis.

RESOLVING VECTORS INTO COMPONENTS

Consider an airplane flying at $\mathbf{9 5} \mathbf{~ k m} / \mathrm{h}$ at $\mathbf{2 0}$ degrees north of east

The hypotenuse ($\mathbf{v}_{\text {plane }}$) is the resultant vector that describes the airplane's total velocity.

The adjacent leg represents the x component $\left(v_{x}\right)$, which describes the airplane's horizontal speed.

The opposite leg represents the y component $\left(v_{y}\right)$, which describes the airplane's vertical speed.

$$
V x=V \operatorname{Cos} \varnothing \quad V y=V \operatorname{Sin} \varnothing
$$

Adding Vectors That Are Not Perpendicular

Vectors \mathbf{A} and \mathbf{B} are two legs of a walk, and \mathbf{R} is the resultant or total displacement. You can use analytical methods to determine the magnitude and direction of \mathbf{R}.

Because the original displacement vectors do not form a right triangle, you can not directly apply the tangent function or the

 Pythagorean theorem

ADDING VECTORS THAT ARE NOT PERPENDICULAR

- To add vectors \mathbf{A} and \mathbf{B}
- First determine the horizontal and vertical components of each vector.
- These are the dotted vectors A_{x}, A_{y}, B_{x} and B_{y} shown in the image.

adding vectors that are not perpendicular

$R_{x} X$ horizontal vector
-Add the magnitude of the vectors \mathbf{A}_{x} and \mathbf{B}_{x}
$R_{y} \mathrm{Y}$ vertical vector
-. Add the magnitudes of the vectors \mathbf{A}_{y} and \mathbf{B}_{y}

EXAMPLE PROBLEM

Given:

Vector A has magnitude 53.0 m , direction 20.0° north of east Vector B has magnitude 34.0 m , direction 63.0° north of east

EXAMPLE PROBLEM

$$
\begin{aligned}
& A x=53 m \operatorname{Cos}(20)=49.8 \mathrm{~m} \\
& A y=53 \mathrm{~m} \operatorname{Sin}(20)=18.1 \mathrm{~m} \\
& B x=34 \mathrm{~m} \operatorname{Cos}(63)=15.4 \mathrm{~m} \\
& B y=34 \mathrm{~m} \operatorname{Sin}(63)=30.3 \mathrm{~m}
\end{aligned}
$$

Xtotal $=A x+B x=49.8 m+15.4 m=65.2 m$
Ytotal $=A y+B y=18.1 m+30.3 m=48.4 m$
$\mathrm{R}^{2}=$ Xtotal $^{2}+$ Ytotal $^{2}=81.2 \mathrm{~m}$
$\varnothing=$ Tan-1 $=$ Ytotot $/$ Xtotal $=36.6^{\circ}$ North of east

