

TWO-DIMENSIONAL MOTION, VECTORS, AND PROJECTILE MOTION

AP Physics Unit 1
Kinematics

OBJECTIVES

-Recognize the differences among, one-, two-, and threedimensional motion

- Describe the properties of a vector and how to find the sum or difference of two vectors
- Be able to solve vector problems graphically and mathematically.
- Solve problems involving projectile motion

SCALAR \& VECTOR QUANTITIES AND GRAPHICAL VECTOR ADDITION

A scalar is a physical quantity that has magnitude but no direction
"Examples - Mass of an object, \# of leaves on a tree, speed
Vector - Physical quantity that has both direction and magnitude

- Velocity includes speed and direction

$$
\overrightarrow{\mathbf{v}}=100 \mathrm{~km} / \mathrm{h} \text { to north }
$$

- Vectors have a head and tail
- A resultant vector represents the sum of two or more vectors.
- Resultant vector goes from the tail of the first vector to the tip of the second vector
- Vectors can be added graphically.

DESCRIBING VECTOR POSTION

$25 \mathrm{~m}, 49^{\circ}$
North of East
Or
$25 \mathrm{~m} 41^{\circ}$ East of North

$23.0 \mathrm{~m}, 15^{\circ}$ North of East

Or
23.0m 75° East of North

$32.0 \mathrm{~m}, 68^{\circ}$
South of East
Or
$32.0 \mathrm{~m}, 22^{\circ}$
East of South

Example: two displacements of the person walking in a city:
a) Person starts walking 9 units to East: Draw a vector representing the displacement
b) Draw a vector representing the displacement to the north. The tail of this vector should originate from the head of the first, eastpointing vector

TAIL TO HEAD METHOD OF ADDING VECTORS

Using a protractor:

- draw a line at an angle \varnothing relative to the east-west axis.
-The length D of the arrow is proportional to the vector's magnitude and is measured along the line with a ruler.

(c)

ADDING VECTORS

Adding vectors - Make sure using same units!

- Can be added in any order
- You can draw one vector with its tail starting at the tip of the other as long as the size and direction of each vector do not change.

The resultant vector can then be drawn from the tail of the first vector to the tip of the last vector.

Resultant - vector representing the sum of 2 or more vectors

- Vector A-15 km/h north
- Vector B-70 km/h 45° south of east
- Vector C-9 km/h north
- Resultant R-66 km/h 20° north of east

