Energy

Identify several forms of energy

Calculate kinetic energy for an object
Apply the work-kinetic energy theorem to solve problems

Distinguish between kinetic \& potential energy
Classify different types of potential energy
Calculate the potential energy associated with an object's position

Energy

Energy is "something" that enables an object to do work
What is that something?
Energy is associated with heat, light, electricity, mechanical motion, sound, and the nature of a chemical reaction

Objects/systems can have energy and can transfer energy or transform it

Energy can be transferred between objects/systems, which we call "doing work." Work done on a system is equal to the amount of energy given or taken away from a system.

$$
\mathrm{W}=\Delta \mathrm{E}
$$

Types of Energy

$K=\frac{1}{2} m v^{2} \quad$ Kinetic Energy
$\mathbf{U}_{\mathrm{s}}=\frac{1}{2} \mathbf{k} \mathbf{x}^{2} \quad$ Potential Spring Energy
$\mathbf{U}_{\mathrm{g}}=\mathbf{m g} \Delta \mathbf{y}$ or mgh Potential Gravity Energy
$\Delta E_{\text {thermal }}=F_{k} d$ Thermal energy
heat energy from friction/air resistance
$E_{\text {mechanical }}=K+U_{g}+\mathbf{U}_{s}$ (doesn't not include thermal energy)

Important points

Kinematic eqns can ONLY be used when a=constant (free fall)

Energy equations can be used when
a $=$ constant (roller coaster)e4I

Sound, heat, deformation, etc are common examples of energy loss

Kinetic Energy

Kinetic Energy depends on speed and mass Units - Joules (used for all forms of energy)
$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$ or $\mathrm{N} \cdot \mathrm{m}$ or J
kinetic energy
$K=\frac{1}{2} m v^{2}$
$\mathrm{K}=$ kinetic energy
$\mathrm{m}=$ mass
$\mathrm{v}=$ velocity

Kinetic Example Problem

A 100. Kg Linebacker moves at $8.90 \mathrm{~m} / \mathrm{s}$ (runs 100 m in 11.2 secs). How much KE does the linebacker have? How fast does a 54.5 Kg wide receiver have to run to have the same KE as the linebacker?

Soln:

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{L}} & =1 / 2 \mathrm{M}_{\mathrm{L}} \mathrm{~V}_{\mathrm{L}}^{2} \\
& =1 / 2(100 . \mathrm{Kg})(8 \\
\mathrm{KE} \mathrm{E}_{\mathrm{L}} & =3.96 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

$$
=1 / 2(100 . \mathrm{Kg})(8.90 \mathrm{~m} / \mathrm{s})^{2} \quad \text { note: wide receiver would have to run } 100 \mathrm{~m}
$$ in 8.26 secs

$$
\begin{aligned}
& \text { Given: Linebacker Wide Receiver } \\
& \mathrm{V}_{\mathrm{L}}=8.90 \mathrm{~m} / \mathrm{s} \quad \mathrm{~V}_{\mathrm{w}}=\text { ? } \\
& M_{L}=100 . \mathrm{kg} \quad M_{w}=54.5 \mathrm{~kg} \\
& \mathrm{KE}_{\mathrm{L}}=\text { ? } \\
& K E_{L}=1 / 2 M_{L} V_{L}{ }^{2} \\
& K E_{W}=K E_{L} \\
& 1 / 2 M_{w} V_{w}{ }^{2}=K E_{L} \\
& V_{w}{ }^{2}=2 K E_{L} / M_{w} \\
& \mathrm{~V}_{\mathrm{w}}{ }^{2}=2\left(3.96 \times 10^{3} \mathrm{~J}\right) /(54.5 \mathrm{~kg}) \\
& \mathrm{V}^{\mathrm{w}}=12.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Work-Kinetic Energy Theorem

Another way of defining work is in terms of what it does: work done on an object changes the energy of that object. This is called the Work-Energy Theorem

The net work $\left(W_{\text {net }}\right)$ done on an object is equal to the change in the KE of the object

WORK-KINETIC ENERGY THEOREM

$$
W_{n e t}=\Delta K E
$$

net work = change in kinetic energy

$$
W_{n e t}=\Delta K E=1 / 2 m v_{f}^{2}-1 / 2 m v_{i}^{2}
$$

When Velocity is constant $\Delta K E=0$ then work is zero

Potential Energy

Potential Energy is the energy associated with an object because of the position, shape, or condition of the object.

Stored energy
Chemical energy
Object due to its position (Gravitational, ex: rock on hilltop)
Elastic potential energy
Gravitational potential energy is the potential energy stored in the gravitational fields of interacting bodies.
depends on height from a zero level (zero level is arbitrary)

$$
U_{g}=m g h
$$

$\mathrm{U}_{\text {gravitational }}=$ mass \times free-fall acceleration \times height

Potential Energy

Elastic Potential energy
The energy available for use in deformed elastic objects
Rubber bands, springs in trampolines, pole-vault poles, muscles
For springs, the distance compressed or stretched $=\Delta x$

Sample Problem: Elastic potential energy

A 70.0 kg stuntman is attached to a bungee cord with an unstretched length of 15.0 m . He jumps off a bridge spanning a river from a height of 50.0 m . When he finally stops, the cord has stretched a length of 44.0 m . Disregard the weight of the bungee cord. Assuming the spring constant of the bungee cord is $71.8 \mathrm{~N} / \mathrm{m}$, what is the total potential energy relative to the water when the man stops falling?

Given:

$$
\begin{aligned}
& m=70.0 \mathrm{~kg} \\
& \mathrm{k}=71.8 \mathrm{~N} / \mathrm{m} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~h}=50.0 \mathrm{~m}-44.0 \mathrm{~m}=6.0 \mathrm{~m} \\
& x=44.0 \mathrm{~m}-15.0 \mathrm{~m}=29.0 \mathrm{~m}
\end{aligned}
$$

$$
U g=0 \mathrm{~J} \text { at river level }
$$

$$
U_{\text {tot }}=\text { ? }
$$

Sample Problem: Elastic potential energy

The zero level for \mathbf{U}_{g} is chosen to be at the surface of the water.
$h=50.0 \mathrm{~m}-44.0 \mathrm{~m}=6.0 \mathrm{~m}$

The total Potential Energy is the sum of $P E_{g}$ and $P E_{\text {elasic }}$

$$
\mathrm{U}_{\text {tot }}=4.1 \times 10^{3} \mathrm{~J}+3.02 \times 10^{4} \mathrm{~J}
$$

$$
U_{\text {tot }}=U_{g}+U_{\text {elastic }}
$$

$$
\mathrm{U}_{\mathrm{g}}=\mathrm{mgh}
$$

$$
\mathrm{U}_{\text {tot }}=3.43 \times 10^{4} \mathrm{~J}
$$

$$
=(70.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(6.0 \mathrm{~m})=4.1 \times 10^{3} \mathrm{~J}
$$

$$
U_{\text {elastic }}=1 / 2 k x^{2}
$$

$$
=1 / 2(71.8 \mathrm{~N} / \mathrm{m})(29.0 \mathrm{~m})^{2}=3.02 \times 10^{4} \mathrm{~J}
$$

