| Name: _ | Ke | ب | | Class: _ | Pret | st | Date: | | | ID: A | |----------------|--|---|---|-----------------------------------|--------------------------------|-------------------------|-------------|------------|----------------|---------------| | Chapter | 5 | Work ar | nd Mach | nines (83 | points) | | | • | | | | | hether | /False
the sentence
ce or statem | | ient is true | or false. Ij | false, cho | ange the i | dentified | word | or phrase to | | 1. | You de | o <u>work</u> on ar | object wh | en you lift i | t from the fl | oor to a sh | nelf | | | | | F 2. | | ng a 25-N ba | | 1 meter abo
— | ve the floor | requires <u>25</u> | 5 joules of | work. | | | | T 3. | The fo | orce exerted b | y a machin | e is called t | he <u>output</u> for | rce | | | , | | | 1 4. | The m | echanical ad | vantage of | a machine tl | nat changes o | only the di | rection of | a force is | 1. | | | F 5. | Efficie | ency compare | es the outpu | —
it work to th | ne <u>output for</u> | <u>ce</u> . T | nput | سه،لا | | | | _F _ 6. | A whe | eel and axle is | a compou | <u>nd</u> machine | S | imple | | _ | | | | <u> </u> | A seco | ond-class leve | er always n | nultiplies <u>di</u> | stance. | force | | | | | | | of the | leal mechanic
inclined plar | ie | <u> </u> | ed by | | | lined pla | ne <u>time</u> | s the height | | F 9. | Your j | aw and teeth | act togethe | er as a <u>simpl</u> | <u>e</u> machine | Com | borng | | | | | F 10. | When | you raise yo | ur leg, the | knee acts as | a fulcrum f | or the upp | er leg | FER | hip | <u>Cthigh</u> | | 5 | e letter
For wo | r of the choi | e on an ob | ject, | | nent or ar | nswers the | e questio | n. | | | r | b. the | ome force need
the object mus
the object mus
the object mus | t move son
t move, wh | ne distance
nether or no | as a result of | a force.
xerted on i | it. | | | | | 12. | a. hob. tryc. pu | of these is a
olding a heav
ying to push
ushing a chilo
olding a door | y piece of y
a car that d
I on a swin | wood at a co
loesn't mov
1g | onstruction s
e out of deep | ite
snow | 1 | | | | | <u>B</u> 13. | a. theb. inc. in | er to do work
e maximum
the same dir
a direction catck and delit | amount of a
ection as the
pposite to | force you ar
ne object's r | e able to execution. | ert. | | | | | | <u>C</u> 14. | Work of a. en b. ve c. di | equals force nergy. elocity. stance. ass. | | | | | | | | | | Name: | ID: A | |---------------------|---| | A 15. | If you exert a force of 20 newtons to push a desk 10 meters, how much work do you do on the desk? a. 200 joules | | • | b. 30 joules c. 10 joules d. 100 joules | | <u>C</u> 16. | Work is measured in a. meters. b. pounds. | | A 17. | c. joules.d. newtons.What do machines do? | | | a. change the amount of force you exert or the distance over which you exert the force b. increase the amount of work that is done c. decrease the amount of work that is done d. eliminate friction | | A 18. | Which of these is located in the middle on a third class lever? a. input force. b. output force c. fulcrum d. rope | | 8 19. | d. ropeHow can a hockey stick be considered a machine?a. It multiplies force.b. It multiplies distance. | | <u>C</u> 20. | c. It changes direction. d. It reduces friction. Pulling down on a rope to hoist a sail on a sailboat is an example of a machine a. multiplying the force you exert. | | No. | b. multiplying the distance over which a force is exerted.c. changing the direction in which a force is exerted.d. reducing friction. | | <u>D</u> 21. | If you exert a force of 20 newtons on a can opener, and the opener exerts a force of 60 newtons on the can, the ideal mechanical advantage of the can opener is a. 6. b. 2. c. 1,200. | | <u>A</u> 22. | d. 3. The mechanical advantage of a machine that changes only the direction of force is a. 1. b. less than 1. c. greater than 1. | | A 23. | d. 0. Without friction there would be a. less machine efficiency. b. greater output work than input work. c. greater input work than output work. d. equal input and output work. | | <u>d</u> 24. | An ideal machine would have an efficiency of a. 1 percent. b. 10 percent. c. 50 percent. d. 100 percent. | | Name: | ID: A | |-----------------|--| | B 25. | The efficiency of a machine compares a. force to mass. | | C 26. | b. output work to input work.c. force to friction.d. friction to mass. | | 20. | friction? a. all of it b. none of it c. one half of it | | A 27. | a. inclined plane.b. wedge. | | <u>C</u> 28. | c. lever. d. pulley. The ideal mechanical advantage for an inclined plane is equal to the length of the incline divided by the a. mass of the incline. | | _C _ 29. | <u> </u> | | D | a. lever. b. wheel and axle. c. wedge. d. pulley. | | <u>B</u> 30. | a. leverb. screwc. wheel and axle | | D 31. | d. pulley The fixed point that a lever pivots around is called the a. axle. b. pulley. c. gear. | | <u>C</u> 32. | d. fulcrum.Which of these is an example of a third-class lever?a. scissorsb. pliers | | <u>B</u> ,33. | a. the total number of ropes on the pulley system | | B 34. | V The state of | | | a. wheel and axle.b. pulley.c. wedge.d. inclined plane. | | Nan | ne: _ | ID: A | |----------|------------------|--| | B | _ 35. | A machine that uses two or more simple machines is called a a. combination machine. b. compound machine. | | Δ | 26 | c. mecĥanical machine. d. mixed machine. | | | _ 36. | A device with toothed wheels that fit into one another is called a a. system of gears. b. wheel and axle. c. pulley. | | <u>C</u> | _ 37. | d. fulcrum. One example of a compound machine is a a. door. b. pair of scissors. c. bicycle. | | B | _ 38. | d. shovel. Most of the machines in your body consist of bones and muscles and are called a. wedges. b. levers. c. pulleys. | | 1 | ₋ 39. | d. compound machines.Which body parts act as the fulcrums of levers?a. musclesb. bones | | | _ 40. | c. joints d. tendons Which body parts are shaped like wedges? a. muscles b. tendons c. incisors d. bones in your legs | | | plet
plete | ion
each sentence or statement. | | | 41. | When you drop a rock, the object that does work on the rock as it falls is Earth (gravity). | | | 42. | A gardener pushes on the angled handle of a lawn mower, causing it to move forward across a lawn. The only portion of the gardener's force that does work on the lawn mower is the force in the | | | 43. | A newton-meter is a measure of work also known as the Joule (T) | | | 44. | The amount of work done in lifting a 25-N bag of sugar 2 meters is the same as lifting two 25-N bags of sugar meter(s). | | | 45. | The force applied to a machine is called the force. | | | 46. | A simple machine makes work easier by multiplying force or, or by changing direction. | | | 47. | The mechanical advantage of a machine cannot be predicted in advance because it depends on the efficiency of the machine. | | Name: _ | ID: A | |---------|--| | 48. | The ideal mechanical advantage would equal the actual mechanical advantage if there were no losses due to | | 49. | The efficiency of an actual machine is always less than | | 50. | The output work of a certain machine is 12,600 J. If the input work is 18,000 J, the efficiency is | | 51. | When you use a paint can opener to open a can of paint, you use the paint can opener as a simple machine called a(n) | | 52. | A jar lid is an example of a simple machine called a(n) Screw. | | 53. | A screwdriver is a simple machine called a(n) wheel + Axle. | | 54. | A ramp in a parking garage is an example of a simple machine called a(n) Todined dane. | | 55. | You can increase the ideal mechanical advantage of a first-class lever by moving the fulcrum closer to the <u>out out</u> force. | | 56. | Raising one end of a ramp will decrease its ideal mechanical advantage. | | 57. | The set of gears on a bicycle wheel is classified as a(n) machine. | | 58. | A chef sometimes holds the tip of a knife stationary when chopping food. Held this way, the knife is a compound machine made up of a wedge and a | As you wave your hand at the wrist, your hand is acting as a simple machine called a(n) 60. As you bite into a peach, your front teeth act as a simple machine called a(n) ## Short Answer ## Levers 61. In what <u>class of lever</u> is the direction of the input force opposite to the direction of the output force? (1 point) 15+ Class Lever 62. What class of lever is a pair of scissors? Explain your answer. (2 points) 63. Which class of lever does not multiply the input force? What is its advantage? (2 points)